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▼ Modern drug discovery research requires
the continual application of strategies to
increase efficiency, implement new technol-
ogies and increase candidate quality. Current
strategies view discovery in terms of four
stages: ‘hit’ selection, lead selection, lead
optimization and development selection
(Fig. 1). All organizations make crucial choices
on the activities, tools and advancement
criteria for each stage. Activities focus on:
• Chemical synthesis: to explore pharmaco-

phore chemical space
• Biological testing: to measure activity and

selectivity
Together, these form the successful SAR

strategy, the correlation of structure and bio-
logical activity.

Pharmacokinetics (PK) and toxicology tradi-
tionally had a minor role during discovery.
When studies revealed that poor properties
cause development attrition [1], organizations
implemented rigorous testing during candidate
selection to ensure that compounds with poor
properties did not advance. Implementation of
this strategy revealed another need: series SAR
was improved during early stages but the can-
didates were later rejected for inadequate PK or

safety. These failures consumed resources, time
and enthusiasm that could be expended on
other series.

Drug-like properties
Studies of drug databases showed that successful
drugs tend to have ‘drug-like properties’. Drug-
likeness, when viewed at the in vivo level, is
thought of in terms of PK and safety. These com-
plex in vivo properties result from an interaction
of physicochemical and structural properties,
such as solubility, permeability and stability,
which are studied in vitro. These properties are,
in turn, dictated by fundamental molecular
properties, such as molecular weight, hydrogen
bonding and polarity, which are studied in silico.
As a result of the importance of properties,
a new strategy emerged: testing the ‘drug-like’
properties of compounds during early discov-
ery using high-throughput property methods
in silico, in vitro and in vivo (often termed
‘pharmaceutical profiling’). By studying the
properties of drug candidates during discovery,
increased efficiency and success should result.

Viable pharmaceutical products require both
activity and drug-like properties [2]. ‘Holistic’
evaluation of each candidate considers both
activity and properties, to determine modifica-
tions to the structural framework that will
optimize overall performance (Table 1). van de
Waterbeemd [3] discussed ‘property-based
design’. The resulting ‘structure-property rela-
tionships’ (SPR) complement SAR. Lipinski [4]
discussed the close relationship between prop-
erties and potency: poorer solubility and
permeability can be tolerated for highly potent
candidates, but more favorable properties are
necessary for lower potency compounds.

Most organizations acquire data on key prop-
erties of compounds shortly after synthesis or
selection from libraries [2,5–8]. The strategy of
applying property information during discovery
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has lead to several productive tactics (Box 1). In many cases,
properties are measured to optimize PK. Properties that affect
human absorption (e.g. permeability, solubility) and metab-
olism (e.g. stability) are used. Compounds that are highly
active in vitro might not be therapeutic in vivo if they have
insufficient PK properties. A less potent compound might
provide better therapeutic effect if its properties permit
enhanced in vivo exposure. Simple models [9–11] and physi-
ologically based software for the prediction of intestinal
absorption, such as iDEA (http://www.lionbioscience.com)
and GastroPlus (http://www.simulations-plus.com) have
been developed for human PK predictions.

An early tactic for using property information was to kill
any losers early and cheaply. However, under the SAR
strategy, compound synthesis must occur for research and
patent purposes. Also, compounds with poor properties
might be the only available starting-point for a target
[12,13]. There has, therefore, been a shift to an optimiz-
ation approach, where resources are directed toward
improving structures for increased activity, selectivity and
properties, despite their current performance.

A key emerging application of property data is for more
informed discovery decisions. Many discovery experiments
are affected by properties such as solubility or permeability
[12,13]. Property information gives insights for the diag-
nosis of root causes of complex processes (e.g. solubility,
permeability and stability affect in vitro assays as well as
bioavailability). Statistical tools can be used to correlate
properties and activity, and to learn which properties can
be enhanced to improve activity [2,14]. Property information
can aid in the planning of experimen-
tal conditions, synthetic modifications
and formulations for in vivo experi-
ments. Research teams can be alerted
to major faults, to save resource invest-
ment in ‘show stoppers’. If a team fo-
cuses solely on SAR, structural series
with poor properties can result (e.g.
SAR will often favor compounds with
high lipophilicity because this will en-
hance target protein binding; however,
such compounds could have increased
liabilities for solubility, bioavailability
or metabolic stability). Property
information can also be used to select
compounds for expensive and time-
consuming biological models, or to
prioritize compounds for further study.
Poulain [15] included property con-
siderations in hit-to-lead medicinal
chemistry by starting with a screening

library that fit the ‘rule-of-5’ [4] and profiling properties
for subsequent synthetic analogs. With limited resources
and compressed discovery time-lines, research teams need
all the information they can get for informed decisions.

There are two ways to improve in vivo activity. The SAR
approach modifies the structure for improved target binding.
The SPR approach modifies the structure for improved
properties that enhance delivery to the target. Structural
modifications for improved SPR include molecular size,
hydrogen bonding, polarity, ionizability and blockade of
unstable positions. In the past, selection and optimization
were driven by activity, but parallel property studies add a
new discovery dimension (Fig. 2). In some cases, structural
modifications that improve properties might diminish activ-
ity or another property [10]. Structural modifications should
start with substructures that have minimal effect on SAR.
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Figure 1. Drug discovery stages and their associated chemical
synthesis (white) and biological testing (red) activities.
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Table 1. Parallel structure–activity relationships (SAR) and structure–
property relationships (SPR) strategies both have in vitro and in vivo
assay tactics

SAR SPR

In vitro assays In vitro assay

HTS Integrity

Enzyme/receptor assays Solubility

Cell-based assays Permeability
Lipophilicity
pKa

Stability
Metabolite screening
Transporters
CYP450 inhibition
Cell exposure
Plasma–protein binding

In vivo assays In vivo assays

Animal model PK/exposure



Pharmaceutical profiling assays
Criteria for pharmaceutical profiling assays
Property assays in pharmaceutical development are highly
validated, accurate and precise for the in-depth study of
individual compounds. However, the requirements in dis-
covery are different. Discovery deals with large numbers of
compounds (hundreds to thousands), small sample size
(mg) and short time-lines (days to weeks). Thus, discovery
assays must be high throughput, conservative in sample
use, inexpensive and rapid. It is also important to evaluate
the relevance of assay conditions. Many property assays
seem uncomplicated and easy to implement; however,

experimental conditions can greatly affect results and
assays should be carefully developed. Methods should be
developed and validated for correlation to high quality
data. The assay predictability should be understood by the
scientist using the information for proper interpretation.
Tools are often developed using a diverse structural set, but
are usually most consistent within a compound series.

Overview of tools for property assessment
Rules and filters Like the ‘rule-of-5’ [4], rotatable bonds [16]
and polar surface area [17] are easy to use, provide immediate
feedback [12] and are effective.
In silico models These are easy and inexpensive to use [18].
Predictions from structure or measured properties are
performed. These tools predict properties of virtual com-
pounds and libraries when planning for chemical synthesis
and of compounds with insufficient material for analysis.
Over-weighting compounds from the structural class in the
model improves series predictions. In silico models are con-
stantly improving. Clark [18], and other contributors to the
special edition of Advanced Drug Delivery Reviews, extensively
discuss the capabilities and limitations of in silico models.
High throughput assays These assays (50–1000 per day)
provide rapid measurement of compound properties early
in the compound lifetime. Little material is used and large
numbers of compounds are assayed. Moderate quality control
(QC) should be performed. The use of highly predictive
in silico methods for some properties (e.g. Log D, pKa) and
high-throughput assays for others, efficiently provides
information for hit selection through lead optimization.
In-depth analyses These provide detailed data of high
confidence for decisions in candidate selection during later
discovery stages. Large quantities of material, longer time-
lines and careful QC are required. Only a limited number
of compounds can be studied.

Barrier-assay model
There are many more assays that could be implemented in
discovery than resources available. In selecting assays, it is
important that they relate to defined needs, so discovery
scientists can directly apply the information. Assay selection
is aided by the model in Figure 3. A compound encounters
many barriers on its path to the therapeutic target. The barrier
might be physical (membrane), physicochemical (solubility,
pH) or biochemical (metabolism). Each barrier attenuates
the amount of compound reaching the therapeutic target.
The assays selected for pharmaceutical profiling should
provide information on how the compound performs at a
barrier. In this way, the medicinal chemist can envision
how a structure can be modified to improve properties that
optimize transmission through a barrier. A diagram of the
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Box 1. Opportunities for applying
pharmaceutical profiling information

• Prioritize compounds using enhanced data
• Interpret activity and property results
• Diagnose complex processes by individual properties
• Correlate properties with activities for optimization
• Better experiments knowing compound characteristics
• Alert research teams to ‘show stoppers’
• Select compounds for expensive in vivo studies
• Predict in vivo ADME
• Guide structure modifications for properties
• Compare prodrugs
• Advance candidates likely to succeed

Figure 2. Discovery research previously focused on activity
optimization. The most active candidates were advanced.
Unfortunately, a significant percentage failed as a result of
poor properties. An emerging strategy is to optimize both
activity and properties during discovery, moving compound
series out of the red area, where either activity or properties are
inadequate, to the green area where candidates have the best
opportunity to succeed. This requires the capability of property
profiling throughout discovery.
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complexity of the in vivo multiple barriers is shown in
Figure 4, along with profiling assays that provide infor-
mation on compound performance at these barriers.

In the following section are a series of assays that reflect this
‘barrier-assay’ model. These assays can be applied individually
to understand performance at a particular barrier, or multiple
assays can be performed to diagnose complex in vivo processes
(e.g. bioavailability) or to apply statistical analysis [2,14].

High throughput physicochemical profiling
Integrity
It is easy to overlook the quality of compounds used in dis-
covery. Compounds might have degraded in HTS screening
plates or storage vials. Purchased compounds might not
have undergone proper QC. A measured biological activity
or property could be caused by an impurity. Thus, integrity
can be considered a barrier to SAR and requires verification.
Integrity profiling is typically performed using LC–UV–MS
technology [19]. This rapid analysis uses HPLC with a wide
solvent polarity gradient to separate diverse sample compo-
nents, UV detection estimates their relative amount, and
MS confirms their identity through their molecular weight.
Criteria are used for acceptance of the material (e.g. >80%
purity, MW consistent with structure). Integrity profiling
can be initiated as soon as hits from HTS are selected and
continued as new compounds are synthesized.

Solubility
Solubility is a barrier that limits the concentration of a
compound in the activity test solution, as well as in the in-
testine, and limits bioavailability. Solubility dictates when
a formulation or salt form is needed for animal experi-
ments. Poor solubility compromises other property assays
[12,13]. For discovery, it is beneficial to measure ‘kinetic’
solubility in which a compound DMSO solution is added
to aqueous buffer, because this is how discovery activity
experiments are conducted.

Several high throughput assays for solubility have been
described: turbidimetry [4], nephalometry [20] and direct
UV [21]. In direct UV, a 20 mg ml–1 DMSO solution is
added to buffer in a 96-well plate. The final DMSO concen-
tration is kept at or below 0.5%, because DMSO enhances
solubility. The solution equilibrates for 18 h, is filtered to
remove precipitate and the concentration is measured
using an UV plate reader. Lipinski [4] noted that solubility
is not likely to limit fraction absorbed for an orally admin-
istered drug with a dose of 1 mg kg–1, if the solubility is
greater than 65 µg ml–1, but it is likely to limit absorption if
the solubility is less than 10 µg ml–1. Solubility measurements
at several pHs are encouraged because pH can dramatically
affect solubility throughout the intestine.

Lipophilicity
Many drug research parameters are affected by lipophilicity,
the tendency of a compound to partition into non-polar
versus aqueous environments. Increasing lipophilicity of a
compound series generally increases permeability, protein
binding and volume of distribution, and decreases solu-
bility and renal extraction [3]. The common measure of
lipophilicity is Log P (log of partition coefficient between
octanol and water). The term Log P is used when all the
solute is in the neutral state and Log D is used when the
pH causes part or all of the solute to be ionized. Literature
values for many compounds were compiled by Hansch
[22]. For higher throughput, the ‘shake flask’ method can
be scaled down to 96 deep-well plates [23]. Reversed phase
HPLC [24,25] and in silico methods (e.g. ProLog D) are effec-
tive over wide lipophilicity and structural ranges and are
efficient for early discovery.

Physicochemical stability
Discovery activity assays (e.g. HTS, enzyme/receptor, cellular,
animal) are inaccurate or variable when the compound is
chemically converted in the assay buffer or dosing solution.
Other destabilizing conditions for discovery compounds
include pH from 2–8 in the intestine, laboratory light ex-
posure and storage degradation [26]. Stability assays can be
conducted in 96-well plates under various conditions and
LC–MS is used to measure the remaining compound versus
control [27].
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Figure 3. Barrier-assay model for pharmaceutical profiling.
Barriers attenuate the concentration of compound reaching the
therapeutic target. Pharmaceutical profiling assays provide data to
assist the understanding of compound performance at a barrier.
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pKa

Ionized compound is more soluble in water than the neu-
tral form, but less permeable. Ionization is determined by
the pKa and aqueous pH; thus, pKa has a major effect on
ADME. Bases equilibrate between the neutral and protonated
forms; amines have pKas around 10–11 and weaker bases have
lower pKas; acids equilibrate between the neutral and depro-
tonated forms. Carboxylic acids have pKas around 3–5 and
weaker acids (e.g. phenols) have higher pKas. A useful rule is
that equal concentrations of neutral and charged species are
present in solution when pH equals pKa for monoacids and
monobases. Some compounds have multiple pKas.

This property is measured in high-throughput mode
using capillary electrophoresis [28] and spectral gradient
analysis (SGA) [29]. The SGA method creates a pH gradient
over a 2 minute period and the UV absorbance of the com-
pound throughout the gradient is used to calculate pKa.
Chemists can modify the ionizable groups on a molecule
to change solubility and permeability.

High throughput in vitro ADME profiling
Metabolic stability
Many discovery compounds exhibit low bioavailability
because of high rates of metabolism. These are ‘phase I’ cyto-
chrome P450 oxidations (e.g. hydroxylation, dealkylation)
or ‘phase II’ conjugations (e.g. glucuronidation). Metabolism
reduces the circulating drug concentration and increases
elimination. Plasma and cells also contain enzymes that

convert drugs (e.g. esterase). Metabolic
stability assays are conducted with
liver microsomes [30; Li, D. unpub-
lished data], S9 fraction [10,26],
hepatocytes [31] and plasma [32].
Microsomes contain the cytochrome
P450 oxidizing enzymes (CYP) and
some phase II conjugating enzymes
(e.g. UDP-glucuronosyltransferases).
The S9 fraction is a cruder preparation
than microsomes and contains the mi-
crosomal enzymes, as well as additional
metabolizing enzymes. Hepatocytes
contain all the liver metabolizing
enzymes that are found in vivo. Micro-
somes are easiest and cheapest to use,
but increased detail can be obtained
with the S9 fraction and hepatocytes.
Plasma contains other types of enzymes
found in blood, such as esterases and
amidases. Stability incubations are
automated using laboratory robots.

The metabolic stability assay requires
high sensitivity (<1 µM) and selectivity (from incubation
matrix interferences) that can only be achieved using
LC–MS–MS. Janizewski [33] described an integrated instru-
ment with a throughput of 30 seconds per sample, which is
likely to be the prototype for future applications.

Metabolic stability results are greatly affected by DMSO
concentration, sample concentration and microsomal
preparation (Li, D. unpublished data). The data can be
misleading with improper methodology.

It is important to remember that metabolism rates and
mechanisms vary among animal species. Thus, rodent
metabolism studies are most useful in early discovery to as-
sist interpretation of rodent pharmacology studies, provide
alerts of liabilities and assist structural modification.
Human metabolism studies become more important as the
project moves toward development and require increased
safety precautions.

Major metabolite screening
When significant instability is found, identifying the con-
version products can benefit the design of more stable
structural analogs. Also, metabolites can be synthesized
and tested for activity and toxicity. Thus, metabolite studies
should be performed during lead optimization synthesis.
LC–MS–MS provides rapid structure elucidation [34,35] by
using the fragmentation of the parent compound as a tem-
plate to rapidly interpret the structures of metabolites, and
requires minimal sample (10–100 ng). When MS does not
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Figure 4. Schematic of some of the barriers encountered by drugs between dosing 
and the therapeutic target. Examples of pharmaceutical profiling assays that provide
information about these barriers are shown in red.
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provide sufficient structural detail, LC–NMR [36] is used,
but this requires 1–100 µg of sample.

Permeability
Compound activity at intracellular targets or good absorp-
tion after oral dosing requires lipid membrane permeation.
Permeability in vivo is a complex phenomenon, involving
several possible mechanisms: passive diffusion, paracellular,
active transport and efflux. Artursson [37] and Mandagere
[10] have estimated that the predominant mechanism of
gastrointestinal (GI) absorption for most commercial drugs
is passive diffusion. Therefore, compound selection and
optimization for passive diffusion is an effective approach.

Several assays exist for permeability. Early methods used
liposomes or immobilized artificial membrane (IAM) chroma-
tography [38]. Cellular models for permeability have been
widely implemented using Caco-2 [39,40] and MDCK (Madin-
Darby canine kidney) cells [41]. Monolayers of cells are grown
on porous filters and test compounds in buffer are placed
on the apical (A) side of the monolayer. The rate of compound
appearance on the basolateral (B) side is measured using
HPLC or LC–MS to calculate permeation rate. Cellular models
incorporate several mechanisms of permeability. Diagnosis
of each mechanism for structural optimization requires stud-
ies under multiple sets of conditions [e.g. A→B, B→A, with
P-glycoprotein (Pgp) inhibitors]. Expression of transporters
varies with laboratory or passage and must be monitored.
Lipinski [12] noted that Caco-2 experiments are most appro-
priate at 100 µM for predicting GI absorption of a 1 mg kg−1-
dosed drug, where transporter saturation is more likely. Also
1 µM is most appropriate for predicting CNS penetration.
However, Caco-2 is commonly performed at 10 µM. Inaccurate
results are also generated for compounds that are not fully
soluble at the intended assay concentration. Higher through-
put 96-well versions of Caco-2 have been reported [42].

Parallel artificial membrane permeability assay (PAMPA)
is receiving considerable attention [43,44]. Instead of a
cellular monolayer, an artificial membrane is created using
lipid in organic diluent. An UV plate reader is used for
rapid and inexpensive quantitation. PAMPA is higher
throughput than Caco-2 and requires ~5% of the resources.
An efficient and productive permeability approach is to use
PAMPA for high-throughput passive diffusion assessment
for all discovery compounds and Caco-2 for the mechanistic
study of selected compounds.

Permeability data can provide an early estimation of
barriers to GI absorption, cell assay membrane permeation,
and to diagnose bioavailability. Permeability through spe-
cialized in vivo membranes, such as the blood-brain barrier
(BBB), can be predicted using specialized cell culture models
[45] or PAMPA modified for BBB [46].

Active transporters
Transporters help explain discrepancies between passive
diffusion and in vivo permeation. Pgp is one of the most
studied transporters and is active in the intestine, BBB and
drug-resistant cancer cells [47]. Polli [48] discussed appli-
cation of three assays for Pgp affinity: ATPase, Calcein AM
and MDR1-MDCK permeation. Many groups use the Caco-2
cell line for studying Pgp. Pgp screening helps avoid series
for which Pgp greatly limits permeability. Some Pgp sub-
strates are also CYP3A4 substrates, resulting in extraction
through ‘cycling’ [3]. Reduced Pgp affinity might improve
bioavailability, brain penetration or activity in cancer cells.

Several uptake transporters (e.g. OCT1, OATP1, OATP2,
MOAT) and efflux transporters (MRPs) are being studied
[49] providing the possibility of permeation-enhancement
design to increase absorption via reduced efflux or increased
active uptake.

CYP450 inhibition
Several drug products were withdrawn because they inhibit
the metabolism of a co-administered drug, resulting in toxi-
city. Assays were developed to measure the rate of metab-
olism of a ‘probe’ compound to its fluorescent metabolite by
a particular CYP450 isoenzyme in the presence and absence
of test compound [50,51]. If the probe metabolism is inhib-
ited, a reduced amount of the probe metabolite is observed
by fluorescence [50] or MS [52] detection. Organizations can
monitor CYP450 inhibition at a single concentration (e.g.
3 µM) and then predict IC50 values from models [51] or
measure a full curve for inhibitory compounds. High inhi-
bition should trigger detailed toxicological evaluation.

Cellular exposure
Cell-associated drug concentration can correlate with cel-
lular pharmacology. If activity is lower than expected,
cellular concentration might be the cause. Low concentration
of drug associated with the cell could be a result of efflux,
poor passive membrane permeation or intracellular
metabolism. When intracellular biochemical conversion is
necessary for activity, formation of the active species is
monitored. These experiments usually dose cells in culture,
followed by washing and LC–MS–MS analysis [53].

Plasma protein binding
Binding of molecules to plasma proteins [e.g. human
serum albumin (HAS), α1-acid glycoprotein (α-AGP)] limits
their free motion. Plasma protein binding (PPB) reduces
the volume of distribution, renal extraction, liver metab-
olism and tissue penetration. Absorption and half-life 
increase with PPB. Some effects offset each other with regard
to drug concentration, so application of PPB information
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for in vivo predictions can be confusing for discovery scien-
tists. PPB can be useful for diagnosing complex in vivo effects,
such as low brain penetration, once in vivo experiments
have been performed. PPB can be estimated using HSA
HPLC chromatography [54], 96-well equilibrium dialysis
[55], Biacore®, or 96-well Microcon® ultrafiltration.

High throughput in vivo profiling
In vivo exposure
In vivo exposure or PK involves the collection of plasma or
tissue samples at certain time points after dosing, followed
by measurement of compound concentration. Simple,
rapid-throughput sample preparation methods, such as
acetonitrile precipitation or solid phase extraction, are
used in conjunction with LC–MS–MS. Throughput is accel-
erated by innovative cassette dosing [56,57] and cassette
processing [58] approaches.

There are several ways that in vivo exposure studies
greatly benefit early discovery. Exposure studies with se-
lected compounds provide an overview of series PK perfor-
mance. If PK is poor, root causes can be diagnosed, so that
structural modifications can be made to improve PK. Less
expensive in vitro tests can then be used to monitor future
compounds in the series [59]. Exposure studies contribute
to animal model validation, dosing level selection and the
need for formulation can be determined. Exposure in
surrogate species is verified before dosing expensive or
time-consuming animal models. PK samples from animal
activity studies are used to correlate plasma concentration
with pharmacology. If no in vivo activity is observed, expo-
sure data helps discern if this is because of a lack of suffi-
cient drug concentration in plasma or tissue [60], or because
of in vivo factors that reduce the expected activity. If in vivo
activity is observed, exposure data are used for SAR.

Future directions
Although the profiling of compound pharmaceutical prop-
erties has progressed rapidly, some gaps still remain. The
accuracy of in silico and in vitro assays for the prediction of
in vivo properties should continue to improve (e.g. Caco-2
and PAMPA predictions are ~60–70% correlated to in vivo
bioavailability). The fundamental basis for establishing
advantageous and disadvantageous ranges for assay results
needs to be improved (e.g. Lipinski performed extensive
database mining to establish solubility ranges). Models and
assays should continue to be simpler, faster and cheaper
(e.g. PAMPA improved the speed and cost of permeability
predictions). Methods of detection that enable higher
throughput with specific endpoints need to be developed
(e.g. fluorescent probes for CYP450 accelerated inhibition
assays). High throughput methods are needed for CYP 

induction, renal clearance, biliary clearance and key toxic-
ity mechanisms. Medicinal chemists need computational
chemists to provide them with SPR information in the same
way that they currently provide SAR information to help
guide analog series planning. Property prediction software
needs to be on the desktop of every medicinal chemist.
Continuing education is required for medicinal chemists on
isosteres and other methods for improving properties to rein-
force the habit of parallel activity and property optimization.
The increased use of software tools for multi-dimensional
property predictions, such as Spotfire [61] and multivariate
statistics [8], should improve in vivo predictions.

Conclusions
Pharmaceutical profiling is an emerging strategy in drug
discovery because properties have a major effect on in vitro
and in vivo pharmacology. It is an enhancement of the SAR
paradigm. Discovery scientists can understand and control
more of the variables that affect their experiments, to
achieve increased success. Profiling data assists the diagno-
sis of compound performance at various barriers, assists
prioritization and optimization, and alerts research teams
to factors that affect development attrition. Properties can
be improved via structural modifications, which is most
successful on substructures having minimal SAR effect.
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