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▼ Systems biology uses an integrated ap-
proach to study and understand the function
of biological systems, and how perturbations
of such systems, for example the adminis-
tration of a therapeutic drug, affect their func-
tion. The biological system can be at the level
of a subcellular organelle, cell, organ, tissue or
organism. The approach requires the simulta-
neous static and/or temporal measurement of
genomic, proteomic and metabolomic para-
meters. Furthermore, it can only be success-
fully applied with a seamlessly integrated
bioanalytical and computational biology
capability in place. Here, we outline general
approaches to the study of biological com-
plexity through systems biology, and provide
examples of successful application of this
discipline in the understanding of disease.

Until recently, drug discovery has primarily
been a linear process based on the sequential
approaches of biology and chemistry. This has
led to the separation of scientific disciplines
into ‘functional silos’, with relatively limited
cross-talk within the discovery process. As a
consequence, the primary approach in the
drug discovery process typically involves
screening vast, randomized chemical libraries
against a small number of pharmacologically

relevant, and in some instances poorly de-
fined, biological targets [1]. Although this
approach has provided some success, the 
impact of HTS, ultra-HTS and high-speed
combinatorial chemistry technologies has
been less than the initially projected ‘several-
fold’ increase in drug discovery productivity
[2]. This is best reflected in the relationship
between the estimated number of HTS assays
per target versus the number of new chemi-
cal entities (NCEs) reaching the market. In
the past decade, this ‘numbers game’ indi-
cated a trend of diminishing returns where
assays per target have increased exponen-
tially from several thousand to hundreds 
of millions. At the same time, the number 
of resultant NCEs remained stagnant [3,4].
Nevertheless, several specific molecular tar-
gets have been identified and exploited
for the treatment of a broad range of patho-
genic conditions, including: β-adrenoceptor
antagonists and angiotensin-converting
enzyme inhibitors for cardiac arrhythmias;
HMG-CoA reductase inhibitors (statins)
for hyperlipidemia; and cyclooxygenase-2
(COX-2) inhibitors for arthritis and general
inflammation. However, in multifactorial
diseases, where multiple targets or pathways
have to be affected for successful treatment
outcomes, linking structurally and function-
ally characterized targets with the disease still
remains a challenge.

A new knowledge-based approach has
emerged that is a more comprehensive, sys-
tems biology-based approach to biological
function, cellular processes and disease-
mediated processes, and that increases the
probability of success in the drug discovery
process. The emphasis is on the integration
of analytical technologies and information,
and includes the incorporation of structural
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data with specific biological pathway information; for
example, the synthesis of structurally defined chemical
libraries that target selected protein families such as 
kinases, phosphatases and G-protein-coupled receptors
(GPCRs). Systems biology signals a departure from the
now common view in drug discovery of ‘single target, one
drug, lone therapeutic indication’. Targeting a broader
range of related biological structures should result in
compounds that have common structural and functional
properties, and common mechanisms of action, ultimately
creating the potential for the application of a therapeutic
to multiple diseases by targeting common pathways 
implicated in pathogenesis.

The impetus for paradigm shift
As the discovery process shifts to a focused high-through-
put biological mode, that is, global gene expression analysis
and whole-genome functional analysis [5–9], the sequen-
tial nature of the established drug discovery process will
become less viable. This reflects an understanding that
many genetic and metabolic disorders, such as cancer,
Alzheimer’s disease and atherosclerosis, are caused and me-
diated by complex multi-molecular interactions that can-
not be readily explained by an alteration in a single gene,
gene product, or enzymatic cascade. Therefore, although
we have a greater understanding of molecular and cellular
processes, fewer than 500 validated targets have been 
exploited for therapeutic intervention to-date [10].

Genes that interact to produce multifactorial disease
phenotypes present many new attractive targets, effec-
tively increasing by several-fold the biological structural
space that needs to be explored for drug discovery. For
example, novel compounds that target the GPCR family
could potentially have dramatic therapeutic benefit in a
broad spectrum of diseases. However, prospects for multi-
ple validated targets for specific conditions in this field are
rare. This limitation is somewhat compelling, as illustrated
by the competition among pharmaceutical companies 
for the same therapeutic indications using similar drugs
against the same target family; for example, serotonin-5HT2

for CNS disorders, and histamine H2 for peptic ulcers [11].
The GPCRs are particularly attractive for pathway-based
drug discovery as they are key facilitators of cellular signal-
ing cascades. Unraveling the complex physiology of 
receptor-mediated signaling, and linking these signaling 
networks to disease presents exciting opportunities in the
identification of multiple new targets, and creates new and
viable options for therapy.

As noted previously, systems biology is an emerging 
and promising discipline that aims to facilitate the under-
standing of phenotypic variation and build comprehensive

models of cellular organization and function. Such an
approach enables the integration of massive quantities
of complex data generated by genomic, proteomic and
metabolic analyses, and provides an interactive process to
translate the findings into novel therapies. Herein lies 
the opportunity for companies with cutting-edge high-
throughput ‘omics’ platforms and integrated informatics
capabilities to create medicines of the future and to secure
solid foundations in a new paradigm of drug discovery.
This paradigm is underscored by the increasing number of
commercial and academic organizations that have staked
their future on the growing recognition and use of system-
based discovery platforms (Table 1). Recent announcements
confirm that big pharma is joining ranks with advocates
of the systems biology approach. Eli Lilly (http://www.
lilly.com/) has announced the establishment of a new
Center for Systems Biology in Singapore accompanied by
an investment of US$140 million.

Systems biology: the emerging discipline
Researchers looking at information on a single level, for
example, a DNA expression profile, only observe a partial
composite of the biological system. Therefore, accumulat-
ing information at multiple levels (e.g. genes, proteins and
metabolites), and studying complex relationships among
such molecules, reveals information about pathways and
ultimately helps to focus in on and better define thera-
peutic targets [12]. This requires a novel unified, holistic
system-level approach to define the relationship between
the genotype, phenotype and drug. Systems biology facili-
tates the understanding of how very complex and dynamic
systems work, thereby providing insight into both the un-
derlying causes of pathogenic changes and the options
available to treat the whole disease rather than one specific
symptom.

The idea of system-level analysis has been around since
Norbert Weiner introduced mathematical models of the
control and communication of complex systems [13], and
Ludwig von Bertalanffy introduced the General Systems
Theory [14] over three decades ago. By emphasizing the
importance of ‘wholeness’, the concepts and central themes
postulated by contemporary systems biology approaches
are proposed to transform the discovery process by the 
parallel study of complex relationships among genetic,
proteomic and metabolic networks.

Genomic technologies have generated vast amounts of
biological data that need to be assembled and defined in a
way that accurately describes living organisms. Many of
the gene, protein, small-molecule and interaction data-
bases, including the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov), Protein Data
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Bank (http://www.rcsb.org/pdb), Kyoto Encyclopedia of
Genes and Genomes (http://www.genome.ad.jp/kegg), and
the Biomolecular Interaction Network Database (http://
www.isc.org/products/BIND) (see Table 2), depict modular
or static biochemical states. Progressive analytical and
mathematical tools are needed to integrate disjointed 
biological events. For example, activation of selected cell-
surface receptors in response to external stimuli, or the
breakdown in the apoptosis cascade associated with tumor-
ogenesis are dynamic events, and knowledge-based models
are needed to explain such pathological processes under-
lying pleiotropic disease. Currently, several concepts of
systems biology exist, each attempting to uniquely equip
its practitioners with a specific road-map for system-level
understanding. Some systems biology approaches, such
as in silico modeling, represent highly approximated 
and constrained views of system infrastructure and func-
tion, principally using known relationships to create
virtual systems. By contrast, approaches proposed by the
Kitano systems biology project [Exploratory Research
for Advanced Technology (http://www.cds.caltech.edu/
erato)], Japan Science and Technology Corporation
(http://www.jst.go.jp/EN) and Hood (Systems Biology

Institute, http://www.systemsbiology.org) advocate the use
of systems biology general operators, such as system struc-
ture, dynamics, control methods and design methods, to
specific areas of biology [15,16]. According to Kitano, the
pivotal process in systems-level analysis is the comprehen-
sive and precise measurement of all components in a sys-
tem and their functional outputs within the cellular space.
The ultimate outcome of such large-scale measurements is
the creation of high-resolution cellular simulation models,
supported and refined by iterative processes of hypothesis-
driven- and wet-experimentation.

An intriguing and somewhat different concept looks for
commonalities in design between biological systems and
the complex organization circuitry found in technology.
Arguably, biology and technology differ on many levels.
The similarities, however, emerge through concepts of con-
vergent evolution, modularity, and elementary feedback-
control, which are well-established processes in biology
and engineering (see Box 1). This approach draws compar-
isons between nature- and human-conceived designs to
reveal a blueprint of a system. Allometric characteristics
(see Box 1), for example, of a fruit fly versus an aircraft, or
complex circuit networks in electronic devices versus cellular
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Table 1. Organizations that incorporate systems biology approaches for discovery efforts (representative
selection)

Name Approach

Bioseek (http://www.bioseekinc.com) Uses systems biology approach to study primary human cell disease models
Beyond Genomics Technology platform facilitates analysis of clinically relevant samples and
  (http://www.beyondgenomics.com)   integrates data from the gene, protein, metabolite and clinic for

  biomarker and target identification
Cellnomica (http://www.cellnomica.com) Conducts novel multicellular modeling in drug discovery and development
Cellzome (http://www.cellzome.com) Proprietary functional proteomics technology for therapeutic target

  discovery, validation and drug development
Department of Energy’s Genomes to Life initiative The Genomes to Life roadmap (plans to design and exploit new high-
  (http://doegenomestolife.org/overview.pdf)   throughput strategies to obtain a blueprint of how living systems function)
Eli Lilly Center for Systems Biology Focuses on integration of proteomic and genomic technologies to support
  (http://www.lilly.com)   drug discovery efforts
Entelos (http://www.entelos.com) Biosimulation company that develops computer models of human disease

  using novel PhysioLab® technology
Institute for Systems Biology Broad based program. Uses systems biology to investigate the complex
  (http://www.systemsbiology.org)   interaction of biological elements that form hierarchical networks that

  define systems
Kitano Symbiotic Systems Project The project aims to understand and design biological systems, thus creating
  (http://www.symbio.jst.go.jp)   a new paradigm in biology Focuses on model organisms including fruit

  fly, yeast and bacteria.
Physiome Sciences (http://www.physiome.com) Biosimulation company that has created and develops integrated

  software platform for computer-based biological models applicable to
  drug discovery

SurroMed (http://www.surromed.com) Develops and implements  biological marker discovery platform to profile
  biochemical components in blood and other biological samples
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Table 2. Structural and/or functionally curated databases and biomolecular interactions resources

Name Category Web Site

BIND (Biomolecular Interaction Network Molecular interaction network database http://www.binddb.org/
  Database)
DIP (Database for Interacting Proteins) Protein-protein interactions http://dip.doe-mbi.ucla.edu/
EMP (Enzymes and Metabolic Pathways) Enzymes and metabolic pathways maps http://emp.mcs.anl.gov/
GO (Gene Ontology) Dynamic controlled vocabulary for http://www.geneontology.org/

  knowledge assembly
KEGG (Kyoto Encyclopedia of Genes and Metabolic pathways http://www.genome.ad.jp/kegg/
  Genomes)
LIGAND (Chemical database for enzyme Chemical compounds  and reactions http://www.genome.ad.jp/ligand/
  reactions)   in biological pathways
NCBI (National Center for Biotechnology Complete genomes and analysis http://www.ncbi.nlm.nih.gov
  Information)
SWISS-PROT Protein sequence database http://www.ebi.ac.uk/swissprot/
TIGR (The Institute for Genomic Research ) Comprehensive microbial resource http://www.tigr.org
TRANSFAC (Transcription factor database) Transcription regulation http://transfac.gbf.de/TRANSFAC/
WIT (What Is There) Metabolic reconstruction http://wit.mcs.anl.gov/WIT2/

Box 1. Terms and definitions

Allometric
The regular systematic pattern of growth such that the mass
or size of any organ or part of a body changes in shape in
response to size changes. This can be expressed in relation
to the total mass or size of the entire organism according to
the allometric equation: 

Y = bxα [Eqn 1]

where Y = mass of the organ, x = mass of the organism, 
α = growth coefficient of the organ, and b = a constant.
Allometric scaling is common in nature, both when compar-
ing two animals of two different sizes and when comparing
the same animal at two different sizes (i.e. growth).

Convergent evolution
The development of superficially similar structures in unre-
lated organisms or biological pathways, usually because the
organisms or pathways evolved in the same kind of envi-
ronment. Examples include the wings of insects and birds,
and the streamlined bodies of whales and fish.

Modularity
A design concept in engineering that enables engineers to
build complex systems out of simpler modules, which can
be tested independently before being integrated. As an 
additional benefit, such modules can be used in more than
one system, saving development time and increasing qual-
ity. Modules also make maintenance of such systems much
easier. These two aspects increase security with such com-
plex systems through ease-of-testing during design and by
facilitating failure detection and correction during operation.
Modularity also appears to have applications in biology.

There are metabolic units that can be found in different
organisms, and homologies are used to compare the
genomes of different organisms to gain insights into develop-
ment, physiology and evolution.

Elementary feedback control
A primary role of feedback control is to ensure robust signal
tracking and to decrease uncertainty owing to noise and
other disturbances in a system. A schematic example of a
feedback control loop is shown below:

where x = y; y = y1 − yo = k(u − x) − yo; y(t) → 0 as t → ∞ if k>0

A block diagram of integral feedback control. The variable u is the
input for a process with gain k. The difference between the actual
output y and the steady-state output y0 represents the normalized
output or error, y. Integral control arises through the feedback loop
in which the time integral of y, x is fed back into the system. This
results in α = y and y = 0 at steady-state for all u [a].

References
a Yi, T-M. et al. (2000) Robust perfect adaptation in bacterial

chemotaxis through integral feedback control. Proc. Natl. Acad. Sci.
U. S. A. 97, 4649–4653

b A Glossary for Systems Biology, available at: http://www.sysbio.de/
projects/glossary

u + k + y

−∫  −x

−y0



signal transduction cascades, provide common blueprints
of system modules and whole-system regulatory architec-
tures, which can be reverse-engineered [17–19]. Essentially,
biological networks, such as gene or protein regulatory
circuits, operate as patterns of interconnections that define
the overall network. Specific patterns or ‘motif’ occur-
rences in organized complex networks evolve at a much
higher frequency than those in randomized systems [20].
One can infer a set of rules that govern connection pat-
terns within and across network modules by comparison
of organized and randomized systems. Subsequent assem-
bly of these modules into an operational system is at the
center of reverse engineering and is complementary to the
experimental, statistical and mathematical methods that
comprise the systems biology tool chest.

Systems biology: metabolic connections
Metabolic engineering provides an example of altering a
system to achieve a desired physiological change. The
methods used in metabolic engineering are relatively
mature and have been used extensively in the fields of in-
dustrial microbiology and microbial physiology. Classical
strategies involve strain-improvement screens for enhancing
fermentation properties, and selection for high producers
of natural products (i.e. penicillin) [21]. Genomics has
created new opportunities in applied metabolic design,
including targeted approaches through direct DNA manip-
ulation to attain preferred phenotypes. An example of 
such rational engineering includes industrially and thera-
peutically important recombinant protein production.
Functional genomics and proteomics approaches in con-
junction with metabolic control analysis (MCA) [22] are
increasingly used to study the metabolic status of living
cells (Box 2). As an emerging science, metabolomics relies
on the systematic comparative analysis of biological samples
both to determine the physiological status of the sample,
and to understand how specific perturbations at the gene
and protein levels can be related to changes in metabolic
flux and enzymatic product:substrate ratios [23,24].

Defining a system by the dynamic state of its
metabolome relies on the effective integration of omics
data because the metabolic state of the system is largely
derived from the global expression of its genome and pro-
teome [25]. As with gene expression and proteomic analysis,
interpretation of complex metabolic patterns is usually
aided by an array of multivariate statistical tools. This strat-
egy has been used to reveal functional differences of silent
phenotypes in the sugar phosphate conversion pathway in
Saccharomyces cerevisiae [26]. These methodologies depend
principally on the accurate quantitative pattern analysis of
metabolic constituents in the cell or cellular compartments.

Medium- and high-resolution methods, such as NMR,
GC–MS and LC–MS, are often the bioanalytical techniques
of choice in metabolite quantitative analysis [27,28]. The
primary result of such measurements is a metabolic profile
that serves as a reporter for the biochemical status of 
the system and can be instrumental in identifying key 
enzymatic steps in metabolically controlled pathways.
Physicochemical parameters, such as rate-limiting steps,
stoichiometric relationships, kinetic and control coeffi-
cients, can be obtained from metabolic-flux measurements
and used in the modeling of metabolic networks.

Several approaches have been reported outlining com-
putational strategies to predict reaction sequence and
pathway modulations in E. coli in response to genetic per-
turbations and environmental challenge [29,30]. In the
case of metabolic regulation, the information gained from
such procedures augments and refines knowledge provided
by gene and protein analysis. Obtaining detailed metabolic
maps of tissues, such as liver or kidney, can have a dra-
matic impact on the drug development process. The value
of metabolic system analysis has been made clear through
the discovery of diagnostic and prognostic biomarkers [31],
mechanisms of drug action [32], efficient management of
absorption, distribution, metabolism, excretion (ADME)
[33], and prediction of drug toxicity [34]. Metabolic 
approaches in systems biology typically combine high-
throughput profiling of endogenous metabolites, MCA,
statistical analysis and in silico methods to define pheno-
typic variation by reversing the established genetic analysis
sequence; that is, establishing links between genotype and
metabolome.

In silico world 
In silico biology and its associated approaches have increas-
ingly been used in the analysis of biological processes
[35,36]. Most in silico models incorporate real biological
data derived from the biochemical properties of gene
products. The data are converted to a numerical format
and plugged into a set of equations and algorithms that
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Box 2. Metabolomics

Metabolic control analysis (MCA) is a method for ana-
lyzing how the control of fluxes and intermediate
concentrations in a metabolic pathway is distributed
among the different enzymes that constitute the path-
way. Instead of assuming the existence of a unique rate-
limiting step, it assumes that there is a definite amount
of flux control and that this is spread quantitatively
among the component enzymes.



attempt to describe the system to be simulated. The model
can be further refined by perturbing the model system in
ways that approximate genetic alteration or the effects of
drug action. Advances in mathematical modeling tools and
computer simulation have positioned in silico biology to
capitalize on technological breakthroughs across all sectors
of biomedical research, from target selection to the emer-
ging field of personalized medicine. As the starting data for
simulation and modeling comprise heterogeneous data
types (gene expression, protein function and metabolic
flux), the inter-relationships among molecular com-
ponents in a target tissue or organ are highly dynamic and
nonlinear. Given this complex relationship, cellular
processes are not easily amenable to a specific single-mod-
eling approach or solution. The basis of every successful
model is the source and the quality of data. The data format,
however, is equally important in the context of seamless
information exchange between various simulation and
modeling software environments. Table 2 lists several data-
bases that contain annotations of functional and interac-
tion data applicable to computational analysis.

Two principal modeling approaches have emerged, and
are referred to as mechanistic or data-driven, and qualita-
tive or hypothesis-driven modeling [36,37]. Mechanistic
models often rely on experimental data input, typically
from high-throughput omics technologies. Modeling vari-
ous aspects of biological processes using mechanistic
approaches can potentially enable the linking of specific
regulatory nodes and pathways within cells and tissues to
underlying causes of disease, thereby providing highly spe-
cific targets for novel therapies. Owing to signal detection
limitations of the current analytical technologies, and the

sheer number and complexity of possible interactions
within a system, mechanistic models often fail to provide
complete solutions for a broad range of cellular processes.
Hypothesis-driven simulation bridges gaps in available
data to construct logical models of selected biological phe-
nomena that fit known information. Presently, several
organizations are developing novel tools to formulate com-
mon descriptors for biological systems modeling (Table 3).

Specific qualitative models have been developed by the
incorporation of Boolean and fuzzy-logic rule-based ap-
proaches [38]. For example, gene networks can be explored
using Boolean parameters that assign simple ‘on–off’ states
to individual connections. However, the majority of bio-
logical processes and pathways cannot be readily described
by basic ‘true–false’ values. Fuzzy logic (Box 3) represents
an extension of traditional Boolean approaches. It is being
increasingly used in computational biology to model gene,
protein and metabolic networks in a more realistic fashion.
If sufficient amounts of data are available – in combination
with temporal information – the increasing levels of
complexity (from subcellular mechanisms to whole cell,
organs and, ultimately, whole body) can be simulated
through statistical influence models that might include
neural and Bayesian networks. When combined with the
development of more advanced computational tools, these
new mathematical and statistical approaches might, in
the future, become central enabling technologies in drug
discovery.

Applications in drug discovery
The impact of systems biology on drug discovery can be
realized in several fundamental ways. Initially, systems
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Table 3. Organizations developing in silico tools and descriptors for general and specific system modeling

Project/Organization Brief description

Alliance for cellular signaling Identify all the proteins that comprise the signaling systems. Assess
  (http://www.cellularsignaling.org)   the time-dependent information flow through the systems in both

  normal and pathological states
CellML™ CellML™ is an XML-based mark-up language designed to facilitate
Physiome Sciences (http://www.physiome.com/)   exchange and integration of biological models
Bioengineering institute at university of Auckland
  (http://www.bioeng.auckland.ac.nz/home/home.php)
E-Cell Project A modeling and simulation capability for biological processes
Keio University (http://www.e-cell.org/about/index.htm)
SBML – Systems Biology markup language Develop the Systems Biology Markup Language (SBML) to represent
Caltech ERATO Kitano Systems Biology project   and model information components in the system
  (http://xml.coverpages.org/sbml.html)
Virtual Cell Virtual Cell environment can be applied to mammalian cells based
University of Connecticut Health Center   on precise measurement of how molecules diffuse to react with
  (http://www.nrcam.uchc.edu)   target cells



biology can be used to identify new uses for existing
molecular targets. This is exemplified by characterized
proteins that have previously lacked an established con-
nection to a specific disease. A second use is the identifi-
cation of novel molecular targets with a connection to
disease. In this case, novel molecular targets might be
endogenous proteins not previously characterized and
therefore do not have an established connection to disease.
Alternatively, they might be mutant proteins (inherent to
the disease) not previously identified. Here, both objectives
might be achieved through a systems biology analysis of
the differences between normal and diseased samples, as
discussed later. A third approach in which systems biology
might be applied to drug discovery is in deciphering
complex signaling relationships, which would enable tar-
geting of the most appropriate region of a signaling
cascade for the development of more efficient and safe
therapeutic agents. In addition to the differential analysis
of diseased and normal samples mentioned previously,
this final use might also be accomplished through studies
that characterize perturbations of the biological system
caused by small molecules, including existing therapeutic
agents. This will enable researchers to discriminate between
cellular changes associated with therapeutic benefits and
cellular changes associated with side-effects: information
relevant for development and regulatory purposes, and for
marketing the therapeutic.

To illustrate the application of systems biology to the
first two potential uses described earlier, consider the infor-
mation that could be derived from the proteomic and
metabolomic analysis of a hypothetical diseased state that
is ultimately attributed to altered expression of a previ-
ously uncharacterized kinase. A proteomic analysis alone
might identify several proteins with distorted expression
levels in the diseased sample with respect to the normal
sample. Initially, each of these proteins represent potential
causative elements of the disease. Alternatively, meta-
bolomic analysis alone might uncover prominent alter-
ations in protein phosphorylation levels in the diseased
sample, suggesting the involvement of altered kinase or
phosphatase activity. However, an integrative systems
biology approach, in which both proteomic and metabol-
omic data acquisition and analysis are performed in paral-
lel, enables a rapid link of the particular kinase to the 
disease in question. The power inherent in the combi-
nation and integration of multiple parallel approaches is
the essence of systems biology.

Decades of genomic, biochemical and cell biology re-
search have provided a wealth of information regarding
the molecular basis of cell function. In many diseases,
proteins linked to the disorder – which ultimately become

molecular targets for drug discovery – might be proteins
that are already well-characterized but whose connection
to the disease has not previously been established.
Systems biology analysis can facilitate the elucidation of
such connections, providing the opportunity for new uses
of existing targets. A successful example of exploiting a
known target with a novel connection to a therapeutic
endpoint is the discovery and successful development of
sildenafil (Viagra™; Pfizer, http://www.pfizer.com) [39].
Pfizer’s program for the discovery of selective phospho-
diesterase (PDE) type 5 inhibitors was initiated with the
intention of attaining therapeutic agents for use in
cardiovascular disorders. The ultimate connection of this
molecular target to mechanisms of smooth muscle relax-
ation provided the basis of investigations of these agents
in the treatment of male erectile dysfunction, ultimately
yielding sildenafil.

Despite our wealth of biological knowledge, it has been
recognized that many causative agents for disease might
be novel, including wild-type or mutant proteins not
previously identified or characterized. Systems biology
can serve to elucidate these causative agents of disease,
thereby identifying completely new targets for drug dis-
covery. The delivery of such novel targets to discovery
programs often provides the first opportunity for the
development of adequate therapies. The importance of
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Box 3. Logic in computational biology

Fuzzy logic is a departure from classical two-valued sets
and uses ‘soft’ linguistic system variables (e.g. large, hot,
tall) and a continuous range of truth values in the inter-
val [0,1], rather than strict binary (true or false) decisions
and assignments and basic Boolean operators (AND, OR
and NOT). Formally, fuzzy logic is a structured, model-
free estimator that approximates a function through 
linguistic input–output associations. Fuzzy rule-based
systems apply these methods to solve many types of
real-world problems, especially where a system is difficult
to model.

Boolean algebra
YES or NO logic (0 or 1)
Something is either ‘part of A’ or ‘not A’
It cannot be ‘A’ and ‘not A’ at the same time
Does not effectively mimic human thinking

Fuzzy logic
Fuzzy sets
Something can be part of A and ‘part of not A’ at the

same time
Mimics human thinking and decisions



connecting a molecular target to disease, the ability of
drug discovery programs to exploit the connections for
the development of therapies, and the subsequent benefit
in terms of human health outcome, was most recently
exemplified by the success story of Gleevec™ (Novartis,
http://www.novartis.com) [40]. The discovery of the
bcr–abl gene, which encodes a protein with elevated tyro-
sine-kinase activity, provided a drug target with differen-
tial activity between normal and leukemic cells. Novartis’
drug discovery program focused on the development of
inhibitors versus this target, and ultimately produced
GleevecΤΜ, the first selective tyrosine-kinase inhibitor to
be approved for the treatment of cancer.

The third use of systems biology mentioned earlier, that
is, the ability to decipher complex inter- and intra-cellular
signaling relationships, should significantly enhance dis-
covery efforts. By defining the behavior of entire signaling
networks, the researcher has the capacity to focus on the
most appropriate region of a cascade for the development
of efficacious and safe therapeutic agents. Signaling events
within or between cells are not restricted to linear path-
ways, but are well-known to be complex and dynamic
networks [41]. Systems biology is uniquely positioned to
work within these complexities as its very essence is the
comprehensive analysis of an entire system. Given some
knowledge of signaling events associated with treatment
of a particular disease, it might be possible to exploit a sys-
tems biology-based effort to revise the entry point within
the system to optimize efficacy and/or minimize side-ef-
fects. The necessity for this kind of approach is perhaps
best exemplified by efforts in the field of depression [42].
Although the majority of research within this field has
focused on the monoamine hypothesis, the complete
pharmacological basis for this disorder remains poorly
understood. This is exemplified by shifts in discovery pro-
grams from those targeting selective serotonin reuptake
inhibitors (SSRIs) to those targeting a variety of postulated
molecular connections, including NMDA, neuropeptide,
nicotinic and cannabinoid receptors. Despite many entries
of novel therapeutics onto the market, the elimination of
side-effects leading to non-compliance, and the problems
associated with delayed onset to efficacy, have yet to be
solved.

One way in which we are able to acquire an under-
standing of signaling networks is through the comparative
analysis of diseased and normal samples. An alternative
approach is through drug perturbation studies. Specifically,
a comprehensive analysis of a biological system upon treat-
ment with small molecules might define the molecular
consequences affected by these molecules. In many in-
stances, existing therapies operate via molecular targets

whose connection to the desired therapeutic outcome is
coupled with connections to unwanted side-effects.
Appropriate selection of small molecules for parallel
perturbation studies enables the researcher to identify
differences invoked by agents known to elicit side-effects
and those exclusively providing efficacy. Identification of
points of entry to the cascade where molecular targets are
free of the connection to side-effects could provide dramatic
improvements in existing therapies.

Central to the successful implementation of systems-
level research is the rigorous selection process and prepara-
tion of disease-relevant clinical samples. The comparative
nature of the integrated analysis dictates that samples fall
into well-defined phenotypic categories, characterized
either by disease pathology or synthetic perturbation
(e.g. genetic mutations and exposure to drugs). Clearly,
exhaustive bioanalytical measurements must be taken
across all static and functional components of the system.
Recent studies have shown interesting results from partial
parallel analyses of genetically perturbed organisms 
by correlating gene expression with protein function or
physiological profiles [43,44]. However, to take full advan-
tage of multi-tiered quantitative analysis, a platform needs
accounting tools for the metabolic components and
sophisticated statistical tools to integrate data. One diffi-
culty in integrating heterogeneous datasets is adapting a
compatible format for the entire signal-based measured
output of the system (e.g. spectral intensity, fluorescence
intensity, concentration, and digital image). Systems
biology approaches that interface data-generating technol-
ogy with customized statistical analysis and normalization
tools enable high-resolution modeling and knowledge
assembly of integrated biochemical data [45]. A recent
study demonstrating the use of this platform describes tar-
geted pattern recognition analysis for the elucidation of
the causes of lipoprotein metabolism dysregulation in a
well-established model of atherosclerosis (E. Davidov
et al., unpublished results) Comprehensive bioanalytical
strategies for simultaneous measurements of transcript,
protein and metabolite content were successfully imple-
mented in the study. To extract maximum value from
chemical component correlations established by statistical
inference, the study used a combination of informatics
tools, collectively termed BioSystematics™ (Beyond
Genomics, http://www.BeyondGenomics.com). The non-
linear statistical and ontology-based data-mining algo-
rithms of this platform enable accurate predictions of the
biological significance of measured correlations in pro-
posed pathway topologies. It shows the direct, simultaneous
correlation of genes, proteins, and metabolites, with the
ultimate goal of ascertaining causal relationships.
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The ability of systems biology to impact the drug dis-
covery and development process from target identification
through to clinical development is illustrated in Fig. 1. The
intrinsic value of systems biology is, in essence, its ability
to unite individual fields of research devoted to structural,
functional and dynamic aspects of biology into one power-
ful discipline.

Concluding remarks
The integrative biology approaches discussed here hold
great potential for the future of drug discovery and the
overall understanding of biological phenomena. The
combination of mature and novel genomic technologies,
improved data management, and mining environments
in conjunction with in silico methods and clinically
relevant samples, positions systems-based analysis at the
frontline of medical research. The deliverables for systems
biology will span the spectrum of the discovery process,
from drug development and clinical trials to personalized
medicine. As it matures, this discipline promises to be-
come a dominant approach in drug discovery and devel-
opment by overcoming the limitations of individual
omics technologies.
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