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Preformulation measurements are used to estimate the fraction absorbed in vivo for orally administered
compounds and thereby allow an early evaluation of the need for enabling formulations. As part of the
Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the pharmaceutical
profiling methods available, with focus on in silico and in vitro models typically used to forecast active
pharmaceutical ingredient’s (APIs) in vivo performance after oral administration. An overview of the com-
position of human, animal and simulated gastrointestinal (GI) fluids is provided and state-of-the art
methodologies to study API properties impacting on oral absorption are reviewed. Assays performed dur-
ing early development, i.e. physicochemical characterization, dissolution profiles under physiological
conditions, permeability assays and the impact of excipients on these properties are discussed in detail
and future demands on pharmaceutical profiling are identified. It is expected that innovative computa-
tional and experimental methods that better describe molecular processes involved in vivo during disso-
lution and absorption of APIs will be developed in the OrBiTo. These methods will provide early insights
into successful pathways (medicinal chemistry or formulation strategy) and are anticipated to increase
the number of new APIs with good oral absorption being discovered.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Large efforts are directed toward pharmaceutical profiling of ac-
tive pharmaceutical ingredients (APIs) during the discovery and
early development process. The aim of this profiling is to evaluate
the potential of the API to display satisfactory biopharmaceutical
properties. However, currently available methods are often not
able to accurately predict in vivo API performance. The increased
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number of compounds profiled within the industrial research pro-
grams has led to the development of high throughput assays. In the
early discovery stages when low amounts of API of limited purity is
available, these provide physicochemical data allowing for catego-
rization or binning of APIs into classes based on properties such as
lipophilicity, solubility and permeability. During later discovery
stages and at the phase of early development, when the compound
library is significantly smaller, methods providing more accurately
measured physicochemical properties are also used. In addition,
the impact of factors such as components present in the gastroin-
testinal (GI) tract are investigated. In particular, solubilization ef-
fects obtained by colloidal lipid structures present in the GI fluid
under fasted and fed conditions are explored. As part of the Oral
Biopharmaceutical Tools (OrBiTo) project, this review provides a
summary of the pharmaceutical profiling methods available, with
focus on in silico and in vitro models typically used to forecast ac-
tive pharmaceutical ingredient’s (APIs) in vivo performance after
oral administration. Here we provide a detailed review of the hu-
man and animal GI fluids under fasted and fed conditions (Sec-
tion 2) and an update on the simulated intestinal fluids currently
employed for in vitro dissolution studies (Section 3). Further, we
provide a chapter on state-of-the-art methods for physicochemical
and pharmaceutical profiling (Section 4), which are then set in an
industrial context in Section 5. Finally, we analyse the gaps and
challenges presently existing when using current in vitro method-
ologies to forecast the in vivo performance and the need for en-
abling formulations of APIs. It is expected that innovative in silico
and in vitro methods that better describe molecular processes in-
volved in vivo during dissolution and absorption of APIs will be
developed in the framework of OrBiTo. We anticipate such models
to early inform projects on successful pathways (molecular struc-
ture optimization and/or formulation strategies) to increase the
number of APIs with good oral absorption being discovered.
2. Composition of GI fluids

The composition of the GI fluids has a large impact on the sol-
ubility and dissolution of poorly soluble API in the GI tract, and
hence a large influence on the drug absorption. Gastric and intesti-
nal fluids sampled from humans have been characterized in a num-
ber of studies, and this review summarizes the current knowledge
with regard to pH, buffer capacity, osmolarity, surface tension and
lipid concentration of GI fluids under fasted and fed conditions. It
should be noted that the studies are varying in pre-dosing liquid
and volume (if any), aspiration time, analytical methods and the
composition of the ingested meal (for the fed state media). The fo-
cus of this review will be on data published on gastric, duodenal
and jejunal composition. Although drug absorption takes place in
the lower part of the gastrointestinal tract, the literature is sparse
and will not be addressed further in this review (Hirtz, 1985).

The methods used for aspiration of gastric or intestinal fluids
involve either intubation orally (Hernell et al., 1990; Lindahl
et al., 1997; Carrière et al., 2000; Pedersen et al., 2000; Persson
et al., 2005; Brouwers et al., 2006; Moreno et al., 2006; Kossena
et al., 2007; Clarysse et al., 2009; AstraZeneca, data on file) or na-
sally (Armand et al., 1996; Kalantzi et al., 2006a, 2006b; Psachou-
lias et al., 2011; Vertzoni et al., 2012). After intubation, the
position of the catheter is observed via fluoroscopy, or other suit-
able radiology methods (Dewar et al., 1982; Schindlbeck et al.,
1987; Armand et al., 1996; Lindahl et al., 1997; Pedersen et al.,
2000; Brouwers et al., 2006; Kalantzi et al., 2006a, 2006b; Moreno
et al., 2006; Persson et al., 2006; Clarysse et al., 2009; Bevernage
et al., 2011; Psachoulias et al., 2011). Intubation catheters vary in
the method applied to collect GI fluid. Brouwers et al. (2006) used
two double-lumen catheters to simultaneously aspirate fluid from
the duodenum (Salem Sump Tube) and the proximal jejunum (Bo-
wel Decompression Catheter), which prevented the creation of
lower pressure in the intestine during aspiration. Kalantzi et al.
(2006a) used a nasally intubated single lumen tube positioned
in the stomach to aspirate gastric fluid and also for administration
of meals prior to fed state sampling. Another more complex aspi-
ration method utilizes a 175 cm long multichannel tube (Loc-I-
Gut), which can be used to aspirate both gastric and intestinal
fluid simultaneously (Hedeman et al., 1996; Lindahl et al., 1997;
Pedersen et al., 2000; Holm et al., 2001a, 2001b; Nielsen et al.,
2001b, 2001a; Zangenberg et al., 2001b, 2001a; Holm et al.,
2002, 2003; Christensen et al., 2004; Karpf et al., 2004; Persson
et al., 2005; Moreno et al., 2006; Kossena et al., 2007). The Loc-
I-Gut tube has two latex balloons distally on the tube positioned
10 cm apart from each other. These balloons are inflated to pre-
vent the tube from passing further down in the intestine after
the targeted position has been reached, as determined fluoroscop-
ically. It should be noted that introducing a catheter was found to
cause duodenogastric reflux (Hoare et al., 1978). According to No-
lan, there was also an increased risk of duodenogastric reflux
upon rapid duodenal and jejunal intubation (Nolan, 1979). This
suggested a potential problem with aspirated gastric fluid during
simultaneous intestinal intubation by the Loc-I-Gut method. In
addition to the different types of tubes, a Heidelberg Capsule
has been administered orally to healthy volunteers to measure
intestinal fluid pH (Dressman et al., 1990). The capsule is a bat-
tery-operated high frequency radio transmitter and a radio anten-
na signal receiver positioned around the waist of the volunteer
records pH over time.

The protocols for aspiration in the fasted state conditions vary;
some investigators administered liquid to the volunteers (Dewar
et al., 1982; Persson et al., 2005; Brouwers et al., 2006; Kalantzi
et al., 2006a, 2006b; Moreno et al., 2006; Clarysse et al., 2009; Bev-
ernage et al., 2011, 2012b; Psachoulias et al., 2011), whereas others
did not (Piper et al., 1965; Finholt and Solvang, 1968; Lindahl et al.,
1997; Moreno et al., 2006; Persson et al., 2006; Pedersen et al.,
2013). In some studies a solution of a non-absorbable marker
(PEG4000) was administered to enable corrections for water
absorption and/or secretion (Kalantzi et al., 2006a, 2006b; Persson
et al., 2006). This can result in lower concentrations of salt and/or
lipids measured in the fasted volunteers due to dilution by the
marker. The emptying water from the stomach has been found to
follow an exponential curve with a half-time of 8–15 min (Brener
et al., 1983; Dressman, 1986; Armand et al., 1994), and hence,
the effect of the dilution will be dependent on the sampling
time-point post fluid administration. Another study examined gas-
tric emptying with relation to the three different phases of the
interdigestive migrating myoelectric complex (IMMC), where sub-
jects received either 50 mL and 200 mL of water (Oberle et al.,
1990). Overall the observed emptying half-life was fastest in phase
I, and slowest in phase III. The emptying half-life was faster in all
three phases for subjects receiving 200 mL of water. When 50 mL
of water was administered the emptying half-life ranged from
9.0 ± 4.9 min (Phase I) up to 60.6 ± 21.0 (Phase III). For patients
receiving 200 mL of water the emptying half-life ranged from
4.9 ± 2.1 to 22.8 ± 17.8 min.

Studies of GI fluid characteristics in the fed state vary with re-
gard to the composition of the administered meal prior to sam-
pling. Nutritional supplements such as Ensure Plus� (Kalantzi
et al., 2006a, 2006b; Clarysse et al., 2009), Scandishake Mix (Clar-
ysse et al., 2009), Shak Iso (Carriere et al., 1993) and Biosorbin
MCT� (Schindlbeck et al., 1987) contain the same nutrients as a
meal and are often used. However, in some studies homogenized
meals were administered (Dewar et al., 1982; Hernell et al., 1990;
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Armand et al., 1996; Kossena et al., 2007; Vertzoni et al., 2012)
and a typical composition was 70 g olive oil, 1 whole egg, 1 egg
white and 70 g of sugar as described by Armand et al. (1996) Of-
ten the meal or nutritional drink is infused directly into the stom-
ach through the intubated catheter. Similarly to fasted state
studies, PEG4000 has also been used to allow corrections for
water absorption/secretion known to occur in the fed state (Kal-
antzi et al., 2006a, 2006b; Persson et al., 2006).

During characterization of the fluids; pH, buffer capacity, osmo-
larity, surface tension, bile salt (BS) and phospholipid (PL) concen-
tration is measured in both the fasted and the fed state. While
some properties mainly rely on one methodology for determina-
tion, e.g. a standard pH electrode is used to determine pH and
freezing point depression is used to measure osmolarity, other
properties have been measured utilizing different techniques in
different studies. Surface tension has been measured using the
Du Noey ring method (Kalantzi et al., 2006a, 2006b), the Du
Noey–Paday method (Clarysse et al., 2009) or the Wilhelmy plate
method (Persson et al., 2005). These methods are described in Sec-
tions 4.7 and 4.8.1.1.1. BS concentration has been quantified using
commercially available enzyme kits (Dewar et al., 1982; Hernell
et al., 1990; Armand et al., 1996; Persson et al., 2005, 2006; Kala-
ntzi et al., 2006a, 2006b; Kossena et al., 2007), GC-Flame ionization
detector (Schindlbeck et al., 1987), gel permeation chromatogra-
phy (Mansbach et al., 1975), HPLC-ELS (Persson et al., 2006), GC–
MS (Clarysse et al., 2009) and HPLC charged aerosol detector
(Vertzoni et al., 2008). PL concentration has also been determined
using commercially available enzymatic kits (Kossena et al., 2007;
Clarysse et al., 2009). Further, degradation of PL thereby freeing
phosphate to be determined by a colorimetric method (Mansbach
et al., 1975; Dewar et al., 1982; Hernell et al., 1990), HPLC-evapo-
rative light scattering detector (Persson et al., 2005, 2006; Kalantzi
et al., 2006b) or HPLC-charged aerosol detector (Vertzoni et al.,
2012) have been used. It is likely that all the different analytical
techniques will contribute to the variability in the surface tension,
BS and PL concentrations observed.

2.1. Human intestinal fluid in the fasted state

2.1.1. pH
All samples discussed here have been analyzed with a standard

pH electrode, with the exception of the study performed by Dress-
man et al. (1990) who used the Heidelberg capsule. Variations in
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Fig. 1. pH measured in fasted gastric, duodenal and jejunal fluids. The Box–whisker
plots show minimum and maximum values, and 25, 50 and 75 percentile. The cross
indicates the mean value. Each data point represents a group of participants (n = 1–
10 colored red; n = 11–20 colored blue; n > 20 colored green) reported in one
publication. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
measured pH may be a result of bicarbonate evaporating during
sample handling, and/or administration of water to the test sub-
jects. The reported pH values of fasted gastric, duodenal and jeju-
nal fluids are shown in Fig. 1. In the stomach, pH values of 1.7 up
to 3.3 (median of 2.5) have been reported (Dressman et al., 1990;
Lindahl et al., 1997; Efentakis and Dressman, 1998; Pedersen
et al., 2000; Kalantzi et al., 2006a; Pedersen et al., 2013; AstraZen-
eca, data on file), whereas pH of the duodenum have been found
to be 5.6–7.0 (median of 6.3) (Brouwers et al., 2006; Kalantzi
et al., 2006a, 2006b; Moreno et al., 2006; Kossena et al., 2007;
Clarysse et al., 2009; Psachoulias et al., 2011). It should be noted
that the four lowest duodenal pH values were measured in the
same study and consisted of four experiments with the same test
subjects over two separate days (Psachoulias et al., 2011). Inter-
estingly, these four results showed little variation between the
sampling days. In the jejunum, the pH has been measured in a
large number of different studies reporting pH values of 6.5–7.8
(median of 6.9) (AstraZeneca, data on file). From these studies
the general trend of the increase in pH from stomach to jejunum
were observed.

2.1.2. Buffer capacity and osmolarity
The buffer capacity of GI fluids is presented in Fig. 2a. Buffer

capacity of gastric fluid has been determined in three studies to
be 13.3–19.0 mM/DpH (median 14.3) (Kalantzi et al., 2006a;
Pedersen et al., 2013; AstraZeneca, data on file), whereas in duode-
num 5.6 and 8.5 mM/DpH have been reported (Kalantzi et al.,
2006a; Moreno et al., 2006). In contrast to the rather sparse data
on buffer capacity of gastric and duodenal fluids, nine studies have
determined the buffer capacity in the jejunum (AstraZeneca, data
on file). These investigations resulted in a median value of 4 mM/
DpH. Hence, the jejunal buffer capacity is in general lower than
the buffer capacity of the duodenum, which in turn is significantly
lower than that of the gastric fluid.

Gastric fluid osmolarity has been reported to be between 119
and 221 mOsm (median of 202 mOsm; Fig. 2b) (Lindahl et al.,
1997; Pedersen et al., 2000; Kalantzi et al., 2006a; Pedersen
et al., 2013; AstraZeneca, data on file). Duodenal fluid osmolarity
has been determined in three studies with values between 137
and 224 mOsm being reported (median 197 mOsm), (Kalantzi
et al., 2006a; Moreno et al., 2006; Clarysse et al., 2009). The osmo-
larity in the jejunum has been reported to be 200–300 mOsm
(median 280 mOsm) (Moreno et al., 2006; AstraZeneca, data on
file), with values tightly grouped near the median. The only study
finding a significantly lower osmolarity (200 mOsm) did not use
the Loc-I-Gut perfusion tube for aspiration, which may provide a
methodological explanation of the result (Moreno et al., 2006).
Osmolarity in jejunal fluid is clearly raised as compared to gastric
and duodenal fluids (Fig. 2b). Interestingly, the lowest osmolarity
values measured in duodenal and jejunal fluids were not a result
of co-administration of water, indicating the influence of other fac-
tors such as sampling methods and inter-individual physiological
variability.

2.1.3. Surface tension, bile salt and phospholipid composition
The surface tension in gastric juice has been reported to be 31–

45 mN/m (median of 36.8 mN/m) (Fig. 3) (Efentakis and Dressman,
1998; Kalantzi et al., 2006a; Pedersen et al., 2013; AstraZeneca,
data on file). This is significantly lower than the surface tension
of water (72 mN/m), and is primarily due to the presence of pepsin,
but also a result of refluxed BS from the duodenum. BS levels in
fasted gastric fluids have been found to be between 0.0 and
0.8 mM (median of 0.28 mM) (Lindahl et al., 1997; Pedersen
et al., 2000, 2013; Kalantzi et al., 2006a; AstraZeneca, data on file),
which indicate that reflux from the duodenum does not occur in all
individuals (Fig. 4a). It has been argued that duodenal reflux can be
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induced by the cannula used to sample the fluids and therefore is
not physiologically relevant (Hoare et al., 1978). This is still under
debate and more studies are warranted to clarify the importance of
duodenal reflux to the stomach. In the duodenum, BS will be pres-
ent in micelles with PL. However, only Dewar and co-workers have
measured the concentration of lyso-phospholipid in gastric fluids
and they found the concentration to be 0.029 mM (Dewar et al.,
1982).
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The surface tension of duodenal fluid is in the same range as
that found for gastric fluids. Only two studies have measured the
surface tension and these analysed fluids sampled at two different
sites in the duodenum (Kalantzi et al., 2006a; Clarysse et al., 2009).
As seen in Fig. 3, there is a tendency of decreased surface tension in
the jejunum compared to the stomach and duodenum (AstraZene-
ca, data on file). This may be a result of pancreatic secretion, in par-
ticular the secretion of bile salts from the gall bladder. The BS
concentration in the duodenum has been determined to 2.5–
5.9 mM (median of 3.25 mM) (Armand et al., 1996; Brouwers
et al., 2006; Kalantzi et al., 2006a; Moreno et al., 2006; Kossena
et al., 2007; Clarysse et al., 2009; Psachoulias et al., 2011) which
is slightly higher than that of the jejunum which range from
1.4 mM to 5.5 mM (median of 2.52 mM) (Lindahl et al., 1997;
Pedersen et al., 2000; Persson et al., 2005; Moreno et al., 2006;
AstraZeneca, data on file), as shown in Fig. 4a. The concentration
of PL in duodenal (Brouwers et al., 2006; Kossena et al., 2007; Clar-
ysse et al., 2009; Psachoulias et al., 2011) and jejunal (Persson
et al., 2005; AstraZeneca, data on file) fluids follows the pattern
of the bile (Fig. 4b).

Human bile compositions reported in three duodenal studies
(Persson et al., 2005; Brouwers et al., 2006; Moreno et al., 2006)
and eleven jejunal studies (Moreno et al., 2006 and ten unpub-
lished studies by AstraZeneca (data on file)) are shown in Fig. 5.
Based on these studies it is evident that conjugated bile acids
constitute the main component of human bile. The single most
occuring bile acid is cholic acid, conjugated to either taurine or gly-
cine, followed by chenodeoxycholic acid and deoxycholic acid. The
PL levels are higher in the duodenum (median of 0.26 mM) than in
the jejunum (median of 0.19 mM) (Fig. 4b). The most common PL
present in the bile is phosphatidylcholine (PC), which is hydrolysed
to lyso-phosphatidylcholine (lyso-PC) in the lumen of the small
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intestine. At the concentrations of PC and lyso-PC present in the
aqueous fluids of the small intestine, lyso-PC forms micelles,
whereas PC forms vesicles. PC will, however, form micelles to-
gether with the bile acids (Carey and Small, 1970; Kleberg et al.,
2010b). Based on this literature survey, it becomes clear that the
levels of BS and PL in fasted duodenal and jejunal fluids have large
variability. Whether this reflects actual individual differences or is
a result of different sampling techniques and analytical methods
used in the published investigations remains to be shown.

An analysis of the ratio of BS to the PL concentration (BS/PL) in
the fasted state shows that the median of the BS concentration is
11.5 times higher than the median of the PL concentration in the
duodenum. The corresponding ratio in the jejunum is 15.5 (Fig. 4c).

2.2. Human intestinal fluid in the fed state

Compared to the literature on fasted state GI fluids published
characterization of fed state GI fluids is rather sparse. Furthermore,
the investigations have used different meals, as well as different
aspiration procedures making comparisons and analysis of results
difficult.

2.2.1. pH
The variations in pH between gastric fasted and fed state will

largely be governed by the administered meal itself. For instance
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10 colored red and n > 20 colored green) reported in one publication. (For
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the commonly used Ensure Plus� with 10 mg/mL PEG4000 has a
pH of 6.6 (Kalantzi et al., 2006a), which is reflected in an increased
gastric pH to 4.5 and 6.7 (Dressman et al., 1990; Kalantzi et al.,
2006a). Because of the pretreatment in the stomach, the pH of
the intestinal fluids is not affected to the same extent as gastric flu-
ids (Fig. 6). In the duodenum, the fed state fluid has been reported
to be between 5.4 and 6.5 (median of 6.0) (Mansbach et al., 1975;
Dressman et al., 1990; Armand et al., 1996; Kalantzi et al., 2006a,
2006b; Clarysse et al., 2009; Vertzoni et al., 2012), which is over-
lapping the pH in the fasted duodenum (5.6–7.0 (median of 6.3)
see above). In jejunal fluids, only one study has recorded the pH
and found it to be 6.1 (Persson et al., 2005).
2.2.2. Buffer capacity
The buffer capacity is raised for gastric, duodenal and jejunal

fluids in the fed state compared to fasted state. The buffer capacity
in the fed state studies has been analyzed by one-way titration of
sodium hydroxide or hydrochloric acid (Kalantzi et al., 2006b;
Vertzoni et al., 2012), or two-way titration by a first titration with
sodium hydroxide then followed by hydrochloric acid titration
(Persson et al., 2005; Kalantzi et al., 2006a). However, the current
literature is rather sparse (Fig. 7a). One study measured the gastric
buffer capacity to 19.5 mM pH�1 (Kalantzi et al., 2006a). The duo-
denal buffer capacity has been measured to be between 24 and
30 mM pH�1 (Kalantzi et al., 2006a, 2006b; Vertzoni et al., 2012),
whereas the only study performed on jejunal fluid obtained
13.9 mM pH�1 (Persson et al., 2005). Similar to buffer capacity,
osmolarity data are also rather scarce (Fig. 7b). The fed gastric juice
has been determined to have an osmolarity of 388 mOsm (Kalantzi
et al., 2006a), whereas the fed state duodenal fluid ranged from
276 to 416 mOsm (Fig. 7b) (Kalantzi et al., 2006a, 2006b; Clarysse
et al., 2009). No studies of osmolarity of fed jejunal fluids have
been reported so far. Overall, the buffer capacity and the osmolar-
ity are higher in the fed state as compared to the fasted (Fig. 2a and
b).
2.2.3. Surface tension, bile salt and phospholipid
Similar surface tension (�30 mN/m) values are observed in all

GI compartments in the fed state. The surface tension of fed gas-
tric fluids (30.5 mN/m; Fig. 8) (Kalantzi et al., 2006a) is lower
than the lowest fasted state gastric surface tension (Fig. 3). Fed
state duodenal fluids have surface tension values of 27.8–
35.4 mN/m (median of 31.3 mN/m), which is also lower as com-
pared to the fasted state (Kalantzi et al., 2006a, 2006b; Clarysse
et al., 2009). Fed state jejunal fluids has a surface tension of
30.0 mN/m (Persson et al., 2005) and hence, although results
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are sparse, the literature suggests the surface tension to be simi-
lar in fasted and fed jejunal fluids.

BS concentration, PL concentration and the BS/PL in the fed
state are shown in Fig. 9. BS concentration is lower in the fed state
gastric fluids (0.051 and 0.31 mM reported by Dewar et al. (1982)
and Schindlbeck et al. (1987), respectively), which is a result of the
dilution of the stomach content caused by the food. In the duode-
nal fluids the BS concentration has been reported to vary between
3.6 and 24.0 mM (median of 11.8 mM) which points to the in-
creased bile secretion into the duodenum during the fed state
(Mansbach et al., 1975; Hernell et al., 1990; Armand et al., 1996;
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Kalantzi et al., 2006a, 2006b; Kossena et al., 2007; Clarysse et al.,
2009; Vertzoni et al., 2012). Jejunal fluids have been sampled in
two studies and BS was determined to 4.5 and 8.0 mM (Persson
et al., 2005; Persson et al., 2006), respectively, which is an increase
when compared to the fasted state (median of 2.52 mM).

The PL concentration in fed gastric fluid has been measured to
0.022 mM (Dewar et al., 1982). Since phospholipids are secreted
with the bile, their level is significantly increased in the intestine,
compared to the fasted state. Duodenal fluid has been sampled in
eight studies and PL concentration was determined to be in a range
from 1.2 to 6.0 mM (median of 2.15 mM) (Mansbach et al., 1975;
Hernell et al., 1990; Armand et al., 1996; Kalantzi et al., 2006b;
Kossena et al., 2007; Clarysse et al., 2009; Vertzoni et al., 2012).
The PL concentration in fed jejunal fluid has been reported to be
2.0–3.0 mM in two studies (Persson et al., 2005, 2006). The amount
of phospholipids present in the administered meal will play a sig-
nificant role. For example, the presence of raw egg will increase the
level of phospholipids.

In a single study the BS/PL ratio in fed gastric fluid was found to
be 2.3 (Dewar et al., 1982). From seven studies of the fed duodenal
fluid the BS/PL ratio ranged from 2 to 16 (median of 3.4) (Mans-
bach et al., 1975; Hernell et al., 1990; Armand et al., 1996; Kalantzi
et al., 2006b; Kossena et al., 2007; Clarysse et al., 2009; Vertzoni
et al., 2012), and from two studies, the fed jejunal fluid was found
to be 2.3 and 2.7 (Persson et al., 2005, 2006). Hence, the BS/PL ratio
is significantly lowered in the fed state (Fig. 9c), as compared to the
fasted state (Fig. 4c). This can either be due to increased PL content
as a result of the administered meal itself or be related to absorp-
tion of PL in the fasted state.

2.2.4. Monoglycerides and free fatty acids
Monoglycerides and free fatty acids are surface-active

molecules that are formed during digestion of triglycerides.
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Quantification is generally performed by HPLC with evaporative
light scattering (Persson et al., 2005; Kalantzi et al., 2006b; Vertz-
oni et al., 2012). To date, the concentration of these components in
the fed gastric fluid has not been reported. In the duodenum,
monoglyceride concentration has been reported in two studies to
be 5.9 and 8.1 mM and the free fatty acid concentration to be
39.4 and 52.0 mM (Fig. 10) (Kalantzi et al., 2006b; Vertzoni et al.,
2012). In fed jejunal fluid the concentration of monoglycerides
and free fatty acids have been determined to be 2.2 and
13.2 mM, respectively (Persson et al., 2005). The concentration of
monoglycerides and free fatty acids will be related to the fat con-
tent of the administered meal. The lower concentration of mono-
glycerides and free fatty acids in the jejunum when compared to
the duodenum indicates absorption of these components.

2.3. Animal gastrointestinal fluid

The physiology of animal models are discussed in detail else-
where (see e.g. Sjögren et al., submitted for publication). Here a
brief overview of the GI fluids of commonly used laboratory ani-
mals is provided and linked to dissolution, solubility and absorp-
tion profiles as the project moves from preclinical (animal) to
clinical (human) studies.

The rat stomach consists of 2 compartments with different pHs;
in the fasted state pH has been found to be 7 in the anterior region
and pH 5 in the glandular region of the stomach (Smith, 1965),
whereas a more recent study by McConnell and coworkers mea-
sured the pH in the content of the fasted rat stomach to be 3.2
(McConnell et al., 2008). In the fed state the pH in the anterior por-
tion of the stomach is 4.3, but drop in the posterior stomach to pH
3.1, and hence the gastric compartment becomes significantly
more acidic when food is ingested (Ward and Coates, 1987). In con-
trast, a McConnell and coworkers found the pH of the content of
the fed rat stomach to be 3.9. (McConnell et al., 2008). A pH change
in the fed state will, however, be dependent on the meal type gi-
ven. In the fasted small intestine of rat the pH increases from 6.5
to approximately 7.1 from the proximal to distal parts (Smith,
1965). This is slightly higher compared to findings by McConnell
et al., who found pH to be 5.9 in the duodenum and 6.1 in the jeju-
num. In the fed state pH was 5.0 in the duodenum and 5.1 in jeju-
num. (McConnell et al., 2008).

Canine gastric pH varies along the length of the stomach. The
anterior gastric pH is 5.5 and drops to 3.4 in the posterior stomach
(Smith, 1965). The pH increases in the small intestine from pH 6.2
in the proximal part to pH 7.5 in the distal (Kararli, 1995) and the
pH of canine intestinal fluid has been confirmed by Kalantzi et al.,
who reported a fasted pH of 7.1 (Kalantzi et al., 2006b).

In a study by Smith and colleagues the anterior stomach pH in
pigs was found to be 4.3 and decreased towards pH 2.2 towards the
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Fig. 10. (a) Free fatty acid (FFA) and (b) monoglyceride (MG) concentration in fed duode
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posterior part of the stomach (Smith, 1965). The pH of the pig
small intestine was 6.0 increasing to pH 7.5 along its length (Smith,
1965).

In comparison to human GI fluids, the gastric juice is less acidic
in animal models often used for absorption studies, here exempli-
fied with rat, dog and pig. In contrast, the pH range of the small
intestine in these species is similar to that observed in man. Hence,
the different gastrointestinal pH-profile between animals and hu-
man may particularly impact on dissolution, solubility and absorp-
tion profiles when solid oral dosage forms with a residence time in
the gastric compartment are studied.
2.3.1. Buffer capacity, bile salts and phospholipids
In fasted dogs a buffer capacity of 1.4–4.2 mM/pH and osmolar-

ity of 69–207 mOsm have been reported (Kalantzi et al., 2006b).
These values varied over the sampling time investigated and the
last sampling point had higher buffer capacity and osmolarity than
earlier time points. In the small intestine of the fasted rat, Staggers
and colleagues reported bile salt concentration in the range of
33.5–61.3 mM (Staggers et al., 1982), whereas a significantly lower
concentration (17–18 mM) was reported by Kararli (1995). In com-
parison, much lower concentrations of bile salt (2.4–9.4 mM) were
measured in the small intestine of dogs (Kalantzi et al., 2006b). The
phospholipid concentration in fasted rat small intestine was mea-
sured to 6.2–6.5 mM (Staggers et al., 1982), whereas up to
8.12 mM was determined in dogs (Kalantzi et al., 2006b). Similar
to man, the most abundant bile salt was taurocholic acid. The main
phospholipid components of the canine bile were phosphatidyl-
choline (94.5%) and phosphatidylethanolamine (5.5%) and phos-
phatidylcholine has also been identified as the main
phospholipid in porcine gallbladder bile (Alvaro et al., 1986). For
a more detailed description of the composition of animal bile, the
reader is referred to a recent review by Holm et al. (2013).

In comparison to human small intestinal fluid in the fasted
state, the buffer capacity and osmolarity determined in dogs are
similar. Both bile salt and phospholipids, and the ratio thereof,
are present at higher levels in rats than in humans, whereas the
levels measured in dogs are similar. In addition the phospholipid
composition is similar in intestinal fluids of these animals and in
human intestinal fluids (Alvaro et al., 1986). The higher levels of
solubilizing colloidal structures in the rat small intestine, as com-
pared to dog and human, may result in an overestimation of the
solubility and hence, absorption in this model for lipophilic com-
pounds. In particular, precipitation of lipophilic weak bases in
the small intestine may be difficult to predict with this animal
model, since neither the pH of the gastric compartment nor the
amount of solubilizing micelles in the small intestine are reflecting
those observed in human GI fluids.
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3. Simulated GI fluids

With the purpose to simulate the solubility and dissolution of
API in the GI tract several media simulating gastric and intestinal
fluids have been developed. In the following section, the most com-
monly used biorelevant media simulating GI fluids will be
described.
3.1. Simulated gastric fluids

Vertzoni et al. first published a fasted state simulated gastric
fluid (FaSSGF) in 2005 (Table 1) (Vertzoni et al., 2005). It was later
updated by increasing the osmolarity to better comply with phys-
iologically measured values (Vertzoni et al., 2007; Erceg et al.,
2012). Several attempts to simulate the gastric conditions during
the fed state have been made, however, the characteristics of gas-
tric fluids in the fed state will be highly dependent on the compo-
sition of the ingested meal. The pH in fed state simulated gastric
fluid (FeSSGF) is raised from 1.6 to 5.0 and the buffer capacity is
25 mM/pH, which is close to that reported for fed state human gas-
tric fluid (HGF) (Jantratid et al., 2008). Long life milk has been ap-
plied to simulate intragastric conditions during intake of a meal in
the stomach. Pepsin and hydrochloric acid is added to imitate the
digestion of milk proteins (Macheras et al., 1986; Fotaki et al.,
2005). The osmolarity is raised to 400 mOsm, which correlates
with HGF data, reviewed in the previous section. As expected,
FeSSGF does not contain bile salts or phospholipids (Jantratid
et al., 2008) since these components are found only at low concen-
trations in the fed stomach.
3.2. Simulated intestinal fluids

3.2.1. Bile salts and phospholipids
Of the most abundant bile salts, sodium taurocholate is the pre-

ferred BS employed in simulated intestinal fluids since it is fully ion-
ized at intestinal pH. Taurocholate has a pKa of 2 (O’Maille and
Richards, 1977; Bortolini et al., 2011) compared to a pKa of 3.9 for
glycocholate (Fini and Roda, 1987). Despite chemical differences in
the BS in man and animals porcine and ox extract have been used
to better resemble physiological bile composition, which contains
a mixture of different BS. The exact batch composition needs to be
determined because of the large batch-to batch variability (Vertzoni
et al., 2004; Kleberg et al., 2010b; Reppas and Vertzoni, 2012). Vertz-
oni et al. (2004) reported problems with the production of fed state
simulated intestinal fluid (FeSSIF) with consistent quality due to
batch variability in crude sodium taurocholate from ox extract
(Vertzoni et al., 2004), which pinpoints the analytical need. The
Table 1
Simulated fasted and fed state gastric media.

FaSSGFa FaSSGF-V2b FeSSGFc

pH 1.6 1.6 5.0
Buffer capacity (mM/pH) – – 25
Buffer type HCl HCl Acetate
Long life milk buffer ratio – – 1:1
Osmolarity (mOsm) 120.7 186.9 400
BS (lM) 80 80 –
PL (lM) 20 20 –
BS/PL 4 4
Pepsin (mg/mL) 0.1 0.1
Surface tension (mN/m) 42.6 42.6

FaSSGF, Fasted state simulated gastric fluid; FaSSGF-V2, Fasted state simulated
gastric fluid version 2; FeSSGF, Fed state simulated gastric fluid; BS, Bile salt; PL,
phospholipid; HCl, hydrochloric acid.

a Vertzoni et al. (2005).
b (Vertzoni et al., 2007).
c Jantratid et al. (2008).
chemical differences between the BS were by Söderlind and co-
workers concluded to have minimal impact on drug solubility at
concentrations of 2–6 mM. They compared felodipine, budesonide,
danazol and retinol in aqueous solutions of various concentrations
of BS and PL with a BS/PL ratio of 4. The BS used were glycholic acid,
taurocholic acid, glychodeoxycholic acid, taurodeoxycholic acid and
glychochenodeoxycholic acid (Söderlind et al., 2010).

The most commonly used PL in biorelevant media is phosphati-
dylcholine (PC) because of its high abundance in bile secretion
(Kleberg et al., 2010b). Egg or soy are the two most common
sources of PC used in biorelevant media, with egg PC having a high-
er amount of saturated fatty acids compared to soy PC. A study by
Vertzoni et al. suggests that the fatty acid composition of PC is only
likely to have significant effects on solubilization of highly lipo-
philic drugs (Vertzoni et al., 2004). The critical micellar concentra-
tion (CMC) of sodium taurocholate together with PC was found to
be 0.2 mM. At a BS/PL ratio less than 1, vesicles are formed, be-
tween 1 and 2, mixed micelles are the dominant form, whereas
for a BS/PL ratio greater than 2, mixed micelles or micelles com-
prised purely of BS are formed (Holm et al., 2013).

3.2.2. Composition of media
Recently published fasted and fed biorelevant intestinal media

are shown in Table 2. Dressman and colleagues introduced fasted
state simulated intestinal fluid (FaSSIF) in 1998, and this was up-
dated to FaSSIF-V2 in 2008 (Dressman et al., 1998; Galia et al.,
1998; Jantratid et al., 2008). The buffer was changed to maleic acid
in order to comply with the pH of the fasted and fed state (see be-
low) and physiological osmolarity. In addition, this resulted in
retarding the rancidity of fat and oil. Further, the FaSSIF-V2 has a
lower PL concentration resulting in an increased BS/PL ratio from
4 to 15 (Jantratid et al., 2008). Importantly, physical stability of
FaSSIF-V2 is better; it is stable for at least 7 days, while FaSSIF
shows signs of phase separation after 24 h. The increased stability
has been accredited to the lowered PL concentration (Söderlind
et al., 2010). Sheng and co-workers compared phosphate buffer
with physiologically more relevant bicarbonate buffer and found
that phosphate buffer had a higher intrinsic dissolution rate com-
pared to bicarbonate buffer for drugs with pKa values below 5.5
(Sheng et al., 2009).

Fed state intestinal media primarily differ from fasted media by
the addition of higher levels of BS and PL. Further, the addition of
lipid digestion products, such as free fatty acids and monoglyce-
rides have been employed (Grove et al., 2005; Nielsen and Müll-
ertz, 2005; Sunesen et al., 2005), which has been shown to be
important in order to achieve in vitro–in vivo relationships (IVIVR)
(Sunesen et al., 2005). As described in Section 2, the pH is often
lower in the small intestine in the fed state, as compared to the
fasted. Fed state simulated intestinal fluid (FeSSIF) was first intro-
duced in 1998 by Dressman and co-workers and later updated to
FeSSIF-V2 (Dressman et al., 1998; Galia et al., 1998; Jantratid
et al., 2008). A reduction of buffer capacity, osmolarity, amount
of BS and PL was implemented in FeSSIF-V2 and the BS/PL ratio
was increased from 4 to 5. In addition, mono-olein (MO) and oleic
acid (OA) were added to simulate the lipolysis of triglycerides by
gastric and pancreatic lipase (Jantratid et al., 2008). In contrast,
in the Copenhagen fasted and fed media (Grove et al., 2005; Niel-
sen and Müllertz, 2005; Kleberg et al., 2010a) the pH is kept at
6.5, BS/PL at 4 and maleate is used as the buffer component. In
the fasted state medium the osmolarity is kept at 270 mOsm,
whereas it may vary in the fed state media. Additionally, lipolysis
products (OA and MO) were added to the fed state media in differ-
ent concentrations and studied at a ratio of 2 and 6. The OA/MO ra-
tio did not affect the surface tension instead the total surfactant
concentration had an influence (i.e. BS + PL + OA + MO). Varying
the OA/MO ratio, however, did produce different colloidal struc-



Table 2
Simulated intestinal media.

FaSSIFa FaSSIF-V2b Copenhagen Fastedc FeSSIFa FeSSIF-V2b Copenhagen Fedc

pH 6.5 6.5 6.5 5 5.8 6.5
Buffer Capacity (mM/pH) 10 10 – 75 25 –
Buffer type KH2PO4 Maleic Acid Trizma Maleate Acetate Maleic Acid Trizma Maleate
Osmolarity (mOsm) 270 180 270 635 390 Varies
Surface tension (mN/m) 45.5 – – 46.3 40.45
Particle size – – – – – –
BS (mM) 3 3 2.5 15 10 5–20
PL (mM) 0.75 0.2 0.625 3.75 2 1.25–5
BS/PL 4 15 4 4 5 4
MO (mM) – – – – 5 0–10
OA (mM) – – – – 0.8 0–45

Abbreviations used: FaSSIF, fasted state simulated intestinal fluid; FeSSIF, fed state simulated intestinal fluid; BS, bile salt; PL, phospholipid; MO, mono-olein; OA, oleic acid.
a Galia et al. (1998).
b Jantratid et al. (2008).
c Kleberg et al. (2010b).

C.A.S. Bergström et al. / European Journal of Pharmaceutical Sciences 57 (2014) 173–199 181
tures which may impact on the solubilization capacity (Kleberg
et al., 2010a). Although large efforts have been directed toward
the establishment of improved simulated media to better mimic
dissolution in fasted and fed HGF and human intestinal fluid
(HIF), few studies have found a good correlation between the sim-
ulated media and human fluids (Kleberg et al., 2010a).
Table 3
Traffic light values used in the ‘Oral Physchem Score’.

Value SolubilitypH6.5 

µg/mL  

ClogP Mw PSA 

Å2

Rotatable Bonds 

0 50 3 400 120 7

1 10-50 3-5 400-500 120-140 8-10

2 <10 >5 >500 >140 >11 

Decision system established at Bayer (Lobell et al., 2006). Abbreviations used:
ClogP, calculated logP; Mw, molecular weight; PSA, polar surface area.
4. Physicochemical characterization methods of API

Physicochemical properties of the API such as lipophilicity, sol-
ubility and the solid state play a crucial role in GI absorption. These
properties will significantly influence the biopharmaceutical per-
formance of the API because of their impact on dissolution, precip-
itation, permeability and food interaction in the stomach and
intestine. Computational models able to accurately predict these
properties are highly sought after as they can inform on structural
features that are fundamental for the resulting physicochemical,
biopharmaceutical and/or pharmaceutical property. Furthermore,
miniaturized experimental methods preferably with high through-
put that accurately predict in vivo absorption are also warranted. In
the following sections, the current status of in silico predictions of
physicochemical parameters, state-of-the art experimental meth-
ods to measure these properties and the impact of the physiologi-
cal conditions that the APIs are exposed to during the dissolution
and absorption in vivo will be discussed.

4.1. Molecular descriptors and in silico predictions of physicochemical
parameters

During the 1990s the interest and efforts to link calculated
molecular properties to in vivo API performance increased. The
relationship between lipophilicity and permeability had long been
known, however, during this time an increased use of calculated
lipophilicity in the form of the logarithm of the partition coefficient
between octanol and water (logP), was used. Although this prop-
erty seem to be fairly straight forward to calculate either from frag-
ment-based/group contribution or more statistically advanced
models (Pliska et al., 1996; Eros et al., 2002; Mannhold et al.,
2009), evaluation of their applicability to specific compound series
obtained in dedicated projects have often proven otherwise (Tetko
and Poda, 2004; Mannhold et al., 2009). Tools that accurately pre-
dict this property are highly important since lipophilicity is related
to both solubility and permeability, and hence will greatly influ-
ence the absorption. In addition, lipophilicity has been identified
to drive pharmacological potency, (Kubinyi, 1979; Andrews et al.,
1984) often through nonspecific binding, which exacerbated the
risk for toxicological effects to occur (Leeson and Springthorpe,
2007; Hughes et al., 2008). In addition to these physiologically
relevant aspects, the lipophilicity can be combined with melting
point and/or entropy of fusion to determine which molecular prop-
erty is of most importance for the dissolution and solvation (Yal-
kowsky and Valvani, 1980; Jain and Yalkowsky, 2001; Wassvik
et al., 2006) and thereby give an early indication of the type of en-
abling formulation that may be needed.

The seminal analysis performed by Lipinski and co-workers
linked simple physicochemical properties (i.e. molecular weight,
logP, hydrogen bond acceptor and donors) to absorption through
the ‘rule of five’ (Lipinski et al., 2001). Molecular weight, hydrogen
bond donor and acceptor properties are easily calculated and more
than 30 different computational methods to predict logP have been
developed (Mannhold et al., 2009). A similar system to Lipinski’s
rule-of-five is the ‘Oral PhysChem Score’ (Lobell et al., 2006), which
uses a ‘traffic light’ approach where API values of MW, calculated
logP, number of rotatable bonds, calculated solubility, and topolog-
ical polar surface area (TPSA) are each assigned a corresponding
traffic light colour (green, 0; yellow, 1; red, 2, see Table 3). The val-
ues are summed; and a lower score indicates better biopharmaceu-
tical properties of the API.

Ritchie and co-workers recently published a detailed review
where a large number of different approaches to visualize limiting
molecular properties for oral absorption and oral bioavailability
were discussed (Ritchie et al., 2011a). They also applied a ‘traffic
light’ system to identify API developability (Ritchie and Macdonald,
2009; Ritchie et al., 2011b). They analysed whether the developabil-
ity of 280 GSK compounds (at different stages of development, from
preclinical candidate selection to proof of concept) was linked to the
number of aromatic rings. One of the properties examined was the
solubility and based on logP and number of aromatic rings the
authors could differentiate between compounds having a poor solu-
bility due to high lipophilicity from those suffering from high aroma-
ticity. Their findings, together with previously published efforts to



Table 4
Solubility definitions.

Thermodynamic solubility Saturated solution in equilibrium with the
thermodynamically stable polymorph

Intrinsic solubility Equilibrium solubility at pH where the API is in
its neutral form

Apparent solubility Solubility measured under given assay
conditions
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identify molecular features producing a strong crystal lattice (Wass-
vik et al., 2008; Mahlin et al., 2011), facilitate the identification of
APIs with solid-state limited solubility, i.e. compounds for which
strong interactions in the crystal lattice is the main factor limiting
the solubility (sometimes described as ‘brick dust’ molecules). Over-
all, the GSK studies conclude that the developability of molecules
significantly decrease when the number of aromatic rings is >3. Fac-
tors that led to this conclusion were solubility, which significantly
decreased with the number of aromatic rings, and lipophilicity, ser-
um albumin binding and CYP3A4 inhibition, all of which signifi-
cantly increased with increased number of aromatic rings. In
addition, a trend (although not statistically significant for the data-
set explored) for increased hERG binding and hERG toxicity was ob-
served as a function of an increased number of aromatic rings
(Ritchie and Macdonald, 2009; Ritchie et al., 2011b). The studies also
revealed that the number of aromatic rings decreased for the GSK
compounds when advancing from preclinical candidate selection
(aromatic rings per molecule = 3.3) to the late stage proof-of-con-
cept studies (aromatic rings = 2.3). These counts of aromatic rings
should be compared with the number of aromatic rings found in
marketed oral drugs which is 1.6.

To summarise, several rule-based systems and predictive mod-
els to forecast absorption exist. These are based on rapidly and of-
ten easily calculated molecular descriptors and can inform the
medicinal chemists on likely ADMET properties and developability
of compound series. In the present literature the following cut off
values have been identified to produce APIs with acceptable bio-
pharmaceutical profile:

� MW < 500 (Lipinski et al., 1997)
� logP < 5 (Lipinski et al., 1997)
� Hydrogen bond donors < 5 (Lipinski et al., 1997)
� H acceptors < 10 (Lipinski et al., 1997)
� Number of rotatable bonds < 10 (Veber et al., 2002; Blake, 2003;

Wenlock et al., 2003)
� logSpH6.5 > 10 mg/L (Lobell et al., 2006)
� TPSA < 140 Å2 (Palm et al., 1997; Clark, 1999)
� Aromatic rings < 4 (Ritchie and Macdonald, 2009)

It should be mentioned that all the above listed properties can-
not be strictly applied to all targets and the impact of each of them
may need to be weighted depending on the receptor family ex-
plored (Lipinski and Hopkins, 2004). These properties will also in-
form the formulators on what hurdles to expect during
development. However, the current computational models provide
only rough estimations of the essential physicochemical properties
(e.g. solubility, logP, melting point (Tm) and pKa). To further im-
prove these models it is important to include the chemical space
of drug discovery compounds in the training sets. This is the main
reason for why the pharmaceutical industry develops their own in-
house programs for prediction of e.g. logP, pKa, solubility and per-
meability, i.e. that the chemical space of their libraries then will be
covered by the model used. The improvement obtained in these
predictions by this approach was recently clearly seen for pKa pre-
dictions of Roche compounds. By including experimentally deter-
mined pKas of a subset of Roche discovery compounds in the
model development, structural features and ionizable groups not
well represented in the literature dataset had the chance to influ-
ence the model development. This approach resulted in that the
Root Mean Square Error improved from 1.09 (without Roche struc-
tures included in the training) to 0.49 (with Roche structures in-
cluded in model development) when the obtained model was
challenged with another Roche dataset (Milletti et al., 2010). Still
these properties need to be determined experimentally during
the preformulation stage to obtain accurate values of e.g. logP,
pKa and solubility. Furthermore, computational models predicting,
e.g. dissolution profiles under physiologically relevant conditions
or the impact of excipients on API performance in vivo are rare
(Fagerberg et al., 2010; Fagerberg et al., 2012; ADMET Predictor
from SimulationsPlus, CA), and therefore these important factors
currently need to be measured experimentally.

4.2. Early physicochemical profiling methods

4.2.1. Traditional approaches
The physicochemical properties that are measured traditionally

as a part of the preformulation package include solubility (S), dis-
sociation constant (pKa), melting point (Tm) and logP. Intrinsic sol-
ubility (S0, see Table 4 for definition), pKa and logP can be predicted
within a reasonable range using computational models and molec-
ular descriptors (Johnson and Zheng, 2006; Norinder and Berg-
strom, 2006; Mannhold et al., 2009; Rupp et al., 2011) and
therefore general information of these properties is usually avail-
able when entering into preformulation assessments. However,
the current computational models for solid state properties such
as Tm only provide categorical predictions (e.g. high/intermedi-
ate/low melting point) rather than absolute values (Bergstrom
et al., 2004). Therefore, to obtain accurate prediction of biopharma-
ceutical performance, it is essential that all physicochemical and
solid state properties of the API are determined experimentally.

4.2.1.1. pKa. The pKa and pKa type (acidic or basic) of a molecule is
used to determine its charge state at a particular pH in solution.
The charge state is known to have an impact on absorption, distri-
bution metabolism, elimination (ADME) properties and the phar-
macokinetic profile of a molecule (Avdeef, 2003). For example,
the charged state of a compound will have a positive effect on
the dissolution rate, as the solubility of ionizable compounds is
known to increase proportionally with the amount of the charged
species as a consequence of pH (Box et al., 2006). Conversely, the
charged state of a compound will have a negative effect on passive
permeability across a membrane, as lipophilicity is inversely pro-
portional to the amount of charged species (Comer, 2006). Hence,
the pKa, solubility and logP will help evaluate the propensity of a
dosed API to dissolve and achieve the required concentration in
GI fluid and subsequently partition into the systemic circulation.
In other areas, the charged state of a molecule will influence bind-
ing to transporters, enzymes, the site of action and off target recep-
tors (Manallack, 2008).

Typically, three techniques are used; acid–base (potentiomet-
ric) titration, UV-spectrophotometry (photometric) or capillary
electrophoresis. The potentiometric technique is based on mea-
surements of the consumption of a titrant as a function of pH dur-
ing an acid–base titration of an ionizable sample and is regarded as
the gold standard for pKa measurement. Typically sample concen-
trations of 0.5–1 mM are required to determine pKas with values
between 3–11 and hence less than a milligram is commonly
needed for a standard titration in 1–2 mL of an aqueous medium.
More sample will be required for pKas at extreme values
(3 > pKa > 11). For poorly soluble compounds, cosolvents may be
required to present the sample in sufficient concentration for pKa

determination. Cosolvents often result in a shift to the pKa and
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therefore the aqueous pKa-value is extrapolated from several re-
sults determined over a wide range of cosolvent concentrations
(Takács-Novák et al., 1997). An attractive alternative to the poten-
tiometric technique is the photometric technique, which also re-
quires an acid–base titration of the sample, but here, the UV
absorbance is measured as a function of pH. In order to determine
the pKa by this method, a change in the UV absorbance signal from
the sample must be observed during the titration. Hence, the com-
pound must have a chromophore and it should be within close
proximity (up to 3–4 bond lengths) to the ionization center. The
photometric technique is more sensitive than the potentiometric
technique, requiring a sample concentration of �30 lM. Also in
this method cosolvents can be used for very poorly soluble com-
pounds and extreme pKa values are more easily determined with
the photometric technique as compared to the potentiometric. A
third technique that can be used for pKa determinations is capillary
electrophoresis (CE). CE, which can be coupled to mass spectrom-
etry to increase the sensitivity, measures pKa through the mobility
of the compound under an applied potential. With this methodol-
ogy, migration times of the sample are measured in a number of
different pH buffers. The migration time will depend upon the
charge state of the molecule and when plotted against pH, should
depict the ionization profile of the sample and hence determine the
pKa (Wan et al., 2003). In fact, any other sample property that
changes with pH can, in principle, be used to determine a sample’s
pKa. For example, NMR and conductivity have been used to mea-
sure pKa. Conductivity has been found to have limited applicability
at high and low pH, due to the high conductivity of the medium at
these pH’s (Albert and Sergeant, 1984). NMR, however, can be use-
ful for site-specific identification of ionizable groups when multi-
ple ionization centers are present, although relatively high
sample concentrations are needed (Box et al., 2008).

4.2.1.2. Lipophilicity. The lipophilicity of a drug molecule represents
its affinity for a water-immiscible organic phase in comparison to
the aqueous environment (van de Waterbeemd et al., 1997). Using
this property, it is possible to assess the affinity of the molecule for
low dielectric media such as biological membranes, enzymes, carri-
ers and target sites and logP has been shown to be related to biolog-
ical activity for many compounds (Meyer, 1899; Leo et al., 1971).
The logP and the distribution coefficient (logD) is typically deter-
mined using n-octanol and water. The concentration of the analyte
is found in both phases of a n-octanol:water system, and logP is de-
fined as the concentration ratio of the neutral species, whereas logD
is the concentration ratio of all charge states. The distribution of
ionizable species varies with pH as a consequence of the pKa and
hence, logD may vary with pH while logP is constant (Comer and
Tam, 2001). Other partition solvents such as cyclohexane, dode-
cane, n-hexane and hexadecane have also been used to determine
partition and distribution coefficients (Zissimos et al., 2002), but
the original solvent n-octanol remains the favored system.

The standard reference method for logP/D determination in-
volves shaking or agitating a flask containing the solvents and ana-
lyte for 24 h or until equilibrium is achieved. The API, in both
solvents, is then quantified using an appropriate technique (e.g.
UV, LC-UV, LC-MS/MS). The dynamic range of this method is
dependent on the detection limits of the analytical method and
so the volume ratio of n-octanol to water should be adjusted to ac-
count for this. Another widely used technique involves a pH titra-
tion of ionizable samples in the n-octanol:water system (Slater
et al., 1994). The partitioning of the sample into n-octanol will
cause a shift in the pKa which is proportional to the lipophilicity
of the neutral state. This shift is used to determine the logP of
the compound in accordance with Le Chatelier’s ‘‘equilibrium prin-
ciple’’. Volume ratios of n-octanol:water can be adjusted to deter-
mine APIs of different levels of lipophilicity e.g., hydrophilic
compounds may need larger volume of n-octanol than lipophilic
compounds, for an equilibrium shift to be observed. Other tech-
niques for determining lipophilicity have used chromatography
where retention or migration times of the sample are compared
to standards of known lipophilicity. These methods include using
octanol coated columns (Lombardo et al., 2001; Gocan et al.,
2006) or the Chromatographic Hydrophobicity Index (Valko et al.,
1997). Capillary electrophoresis has also been used to assess distri-
bution using a micellar based system for studying membrane par-
titioning (Wong et al., 2004).

4.2.1.3. Solubility. Solubility is one of the most important properties
of an API regardless of the route of administration. For oral medi-
cations, dissolution is required before a molecule can permeate
across a biological membrane to be absorbed into the systemic cir-
culation and elicit its pharmacological response. Without sufficient
solubility, molecules can suffer from solubility-limited absorption
and/or non-linear pharmacokinetics and dose responses. This is
particularly problematic when trying to develop formulations to
assess safety issues. In the last decade the number of poorly soluble
APIs reaching clinical development has increased as increased po-
tency has often been pursued by incorporating lipophilic regions
into molecules (Keseru and Makara, 2009). Hence, solubility
enhancement and enabling formulation technology as a means to
increase API concentration levels in the lumen and thereby en-
hance absorption have gained much attention (see Section 4.6).

Thermodynamic solubility of an API is defined as the concentra-
tion reached at equilibrium between the solid drug substance (sol-
ute) in a liquid solvent to form a homogeneous solution of the
solute in the solvent (for solubility terminology see Table 4). Typ-
ically, pharmaceutical scientists want to know the solubility in an
aqueous-based system and dissolution media have been designed
to mimic gastric and intestinal fluids under fasted and fed condi-
tions as discussed in detail in Section 3. For formulation purpose,
the impact of excipients and additives on solubility are important.
In aqueous-based systems the pH of the medium is also crucial in
assessing the solubility of ionizable drugs as it influences the de-
gree of ionization and the proportion of neutral and charged forms
present. The neutral drug species is much less soluble than the ion-
ized species or salt forms of the drug as described by the Hender-
son–Hasselbalch equation.

Traditionally, thermodynamic solubility has been determined
using the shake-flask technique. The golden standard protocol for
solubility measurements includes equilibrating the pure, crystal-
line API for several days in a saturated suspension containing the
medium of interest. Samples are withdrawn at multiple time
points to determine if equilibrium has been reached, which in-
volves separating solid from liquid phase by centrifugation or fil-
tration and determining API concentration in the liquid phase. In
general, API chemical stability is assessed throughout the equili-
bration time, the pH of the liquid is measured after equilibrium
is reached and finally, the solid state form of the remaining solid
in the vessel can be analysed to reveal whether or not a solid-to-so-
lid phase transition occurred during the experiment (Bergstrom
et al., 2002; Glomme et al., 2005). This procedure is usually per-
formed during late discovery/early development stage, but is time
consuming and therefore not useful for medium to high through-
put screening. For this reason, a large number of scaled down
methods exist for the determination of intrinsic (S0) and apparent
solubility (Sapp) making the protocols applicable to the discovery
phase when only small amounts of compound are available. These
methods range from miniaturised shake-flask methods (0.05–2 mL
(Bergstrom et al., 2002; Glomme et al., 2005; Wyttenbach et al.,
2007)) over potentiometric titration (1–15 mL, (Avdeef, 1998; Stu-
art and Box, 2005)) to small-scale dissolution baths (<20 mL) with
real time concentration determination in situ (Avdeef, 2007;
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Avdeef and Tsinman, 2008). In addition to solubility the intrinsic
dissolution rate (IDR) is of importance. This property is typically
measured under physiologically relevant conditions, e.g. at the
pH of the small intestine, but may also be determined in the pres-
ence of excipients. IDR is typically measured in standardised USP
dissolution baths using the rotating disc method. These vessels re-
quire large solvent volumes and are therefore not applicable in dis-
covery and the early stages of development. As a response to this
several new small scale dissolution baths have recently been
developed, and e.g. the lDISS Profiler can be used for small scale
IDR measurements from discs (Avdeef, 2007; Avdeef and Tsinman,
2008). Together, the IDR and solubility measurements will inform
on the likelihood of solubility or dissolution limited absorption. In
addition, the IDR measurements can be used to guide formulation
scientists on expected improvement in concentration obtained
from e.g. particle size reduction or improved dispersion.

4.3. Current physicochemical profiling to increase throughput and
applicability

Multiple methods have been established to determine solubility
and dissolution rate at various stages during the research and
development process (Table 5) within pharmaceutical companies
(Murdande et al., 2011).

During the early discovery stage only a few milligrams of API is
available for solubility determination. The material is of limited
purity and with unknown solid state characteristics (amorphous/
crystalline, salt/neutral) and may contain residual solvents. Conse-
quently, solubility values obtained during the early stages are not
very reliable and therefore find limited applicability in biopharma-
ceutical predictions. Rather, they are performed to obtain initial
information of the solubility range of a compound or a compound
class. With this aim in mind, the methods typically bin compounds
into classes of ‘less than’ or ‘greater than’ an acceptable value. At
this stage the methods are automated, performed in microtiter
plates and commonly stock solutions of DMSO are used although
protocols for measurements starting from the powder exist (Alsenz
and Kansy, 2007; Zhou et al., 2007; Wan and Holmen, 2009). The
time interval for shaking/mixing the API and solvent will be differ-
ent in different laboratories, and currently, no standardised proto-
cols exist. Alternatively turbidimetric solubility determination can
be performed in which the solubility is determined based on API
precipitation from a DMSO/water supersaturated solution (Lipinski
et al., 2001). However, these methods have sometimes provided
values greater than 50-fold higher the saturation solubility of the
thermodynamically stable polymorph (Stuart and Box, 2005).

4.4. Physiologically relevant dissolution profiling

To better mimic the in vivo dissolution profiles for orally admin-
istered API and/or formulations thereof, dissolution profiling has
Table 5
Solubility measurements and method applicability.

Solubility in discovery Solubility in development

Assay Turbidimetric solubility Equilibrium solubility
API form Non crystalline/polymorphic Crystalline
Solid state Not characterized Polymorphs characterized
API form Dissolved in DMSO Solid used
Method Added to stirred medium Equilibrating with medium
Time scale 10’s of minutes 24–48 h
Applicability Suitable in early discovery Essential in development
Used for in vivo animal SAR MAD, dissolution, salt screen
Amount Micrograms Milligrams

Abbreviations used: Dimethylsulfoxide (DMSO), structure activity relationships
(SAR), maximum absorbable dose (MAD)
evolved towards using physiologically relevant media as reviewed
in Section 3. The impact of the pH on the solubility and the dissolu-
tion rate has been emphasized by the requirement of complete dis-
solution of the maximum oral dose in the pH range of 1–6.8/7.5 to
flag high solubility as proposed in the Biopharmaceutics Classifica-
tion System (BCS) (FDA, 2000; EMA, 2010). Further, the simulated
intestinal fluids have made it possible to analyse the dissolution ef-
fects of the colloidal lipid structures naturally present in the intes-
tine to solubilise poorly soluble, lipophilic compounds. These media
have been extensively applied in measurements of Sapp, determina-
tion of IDR and/or dissolution rate determinations. A majority of the
studies published on dissolution profiling have reported dissolution
and/or apparent solubility for a single API or formulations thereof,
but during the last couple of years larger datasets have also been
profiled in detail for dissolution behaviour and apparent solubility
of APIs in fasted and fed state simulated media (Fagerberg et al.,
2010, 2012; Ottaviani et al., 2010; Söderlind et al., 2010; Zaki
et al., 2010; Clarysse et al., 2011). In some of these papers, the ob-
tained data have been compared with dissolution profiles obtained
in aspirated HIF (Söderlind et al., 2010; Clarysse et al., 2011). One
finding in these comparisons was that the FaSSIF-V2 better pre-
dicted the solubility in HIF for neutral compounds than did the ori-
ginal FaSSIF, while they did not differ in their ability to forecast HIF
solubility of acids and bases. Several papers have indicated that for
API with logP > 3–4, or logD6.5 > 2, the mixed micelles composed of
lipids and bile acids present in jejunal fluid may significantly in-
crease the Sapp of the drug in the intestine. (Dressman and Reppas,
2000; Bergstrom et al., 2007; Fagerberg et al., 2010; Gamsiz et al.,
2010; Ottaviani et al., 2010) This simple rule of thumb can be used
to determine whether a solubility measurement should be per-
formed in a more complex biorelevant medium containing mixed
micelles rather than in pH-adjusted buffers.

Physiological dissolution profiling has traditionally been per-
formed at a reasonably large scale (500–900 mL) typically using
dissolution baths of USP II and IV type. Such assays become expen-
sive because of the large amount of pure BS and PL required for the
biorelevant medium and further the general applicability is limited
because of the large amount of API required to saturate the med-
ium. Hence, large scale dissolution profiling methods are not suit-
able when a series of compounds is to be assessed or when the
amount of API is limited. Currently, several miniaturised methods
such as the lDISS, the T3 platform and miniaturized USP dissolu-
tion apparatus II are present and these can be used to measure
both intrinsic dissolution rate from small discs in small volumes
of biorelevant dissolution medium or measure dissolution and
apparent solubility from powder (Avdeef, 2007; Avdeef and Tsin-
man, 2008; Gravestock et al., 2011; Zecevic and Wagner, 2013).
These innovations have resulted in the ability to test dissolution
in volumes of only 10–20 mL, which in turn have shifted the use
of simulated intestinal fluids to the stage of early preformulation.
It needs to be mentioned that during powder-based dissolution as-
says the surface area of the particles is constantly changing. In
addition, the amount of the material weighed into the dissolution
vial, the wettability and the dispersion of the particles will influ-
ence the determined dissolution rate. In vivo, the size of the parti-
cle when introduced to the intestinal fluid may influence the
dissolution and thus absorption after oral administration of solid
API. A theoretically calculated critical particle size below which
the drug absorption is no longer dissolution rate limited has been
suggested (Oh et al., 1993; Butler and Dressman, 2010), however,
thus far, experimental knowledge on biological relevance of such
a calculated particle size value is limited. Only a few in vivo animal
pharmacokinetic (PK) studies investigating the influence of particle
size on in vivo dissolution and absorption have been published,
each study using different experimental conditions and doses,
sometimes with only two particle size fractions compared to each
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other (Liversidge and Conzentino, 1995; Jia et al., 2002; Scholz
et al., 2002; Jinno et al., 2006; Hanafy et al., 2007; Xia et al.,
2010). A qualitative correlation has been observed in which disso-
lution rate increased with decreased particle size as would be ex-
pected from the Noyes–Whitney relationship. However, a particle
size at which further reduction does not yield further increase in
dissolution in vivo has not been possible to extract from these
experimental investigations.

While (intrinsic) dissolution rate and apparent solubility is
commonly studied in biorelevant dissolution media it may be more
difficult to investigate the tendency of the API to precipitate in the
intestinal fluid. Precipitation may occur for APIs administered in
solid-state manipulated materials such as amorphous systems,
cocrystals or salt, all of which result in supersaturation and even-
tually precipitation. However, from a non-modified API perspec-
tive, precipitation in vivo is mainly a concern for poorly soluble
weak bases which, during the transit from the stomach to the jeju-
num will become significantly less soluble due to the increased pH.
Although precipitation risk may be identified from the pH-depen-
dent solubility profile or in vitro precipitation studies, these have
been found to over-predict the precipitation tendency in vivo (Carl-
ert et al., 2010). This may partly be explained by the experimental
set up in vitro (Augustijns and Brewster, 2012; Bevernage et al.,
2013), which amongst others does not take into account the disap-
pearance of the drug from the intestine. Another explanation is the
fact that supersaturation may be obtained long enough in the jeju-
num to allow absorption to occur. This could, for instance, be a re-
sult of food components remaining in the intestine and potentially
acting as precipitation inhibitors. However, in vitro precipitation
data have been used to establish theoretical models for calculation
of crystallization rates which successfully evaluated the risk for
in vivo precipitation (Carlert et al., 2010).

4.5. Impact of solid state transformations occurring during storage and
dissolution

New API is usually presented after synthesis as a solid, classi-
cally produced by a crystallization process to improve purity. This
solid state controls dissolution and solubility since it must be ther-
modynamically favorable for the molecule to leave the solid and
enter the solvent for dissolution to occur (Yalkowsky, 1999). The
free energy values associated with the solid form are determined
by the crystal structure and as small molecules have the ability
to exist in multiple solid state forms or polymorphs as well as sol-
vates, salts, co-crystals or the disordered amorphous state, control
is the key to ensure reproducible performance. The API solid state
and its associated properties is a critical factor controlling pharma-
ceutical developability (Huang and Tong, 2004). The ability to pre-
dict an API’s solid state based on its molecular structure is a
developing field (Price, 2004) based around searching for the most
stable lattice structure that can be formed by a molecule. The early
attempts tended to overestimate the possibility of polymorphism
and did not incorporate any consideration of kinetic factors during
the crystallization process controlling nucleation and growth. In
addition simple rigid model molecules were studied to aid predic-
tive capabilities rather than the more complex flexible multi-com-
ponent structural features present in currently discovered APIs.
Refinements have been introduced which are improving the pre-
dictive properties of these techniques but the ability to absolutely
de novo predict crystal structure and polymorphism remains elu-
sive (Price, 2008; Abramov, 2012). The current computational ap-
proaches cannot accurately predict crystal structure or its effect
on solubility or the mechanical properties, the latter being crucial
for formulation processes (Shariare et al., 2012). Prediction of
structure is therefore advancing as one of the methods for solid
form discovery (Llinas and Goodman, 2008), however at present
it only complements current solid form screening techniques (Aal-
tonen et al., 2009) by confirming already known crystal forms and
potentially pointing to missed forms.

In general, about 80% of small molecule APIs are polymorphic,
i.e. the same chemical structure can display different crystal lattice
arrangements, with the majority appearing in two or three differ-
ent polymorphs (Grunenberg, 1997). Even though the chemical
structure is the same, visual appearance (colour, crystal habit)
and physicochemical properties (e.g. Tm, hygroscopicity, Sapp,
IDR, density, hardness, stability) may differ significantly between
different polymorphs. To avoid polymorphic transition throughout
manufacturing and storage, and the change in solubility and bio-
availability associated with such solid state transformation (Sing-
hal and Curatolo, 2004), immediate release tablets are generally
developed using the API in its thermodynamically stable form.
However, this crystal form is the least soluble form and not always
identified at early development stages. Indeed, occasionally new
polymorphs are not identified until after the medicine is marketed
with the most famous example being ritonavir (Bauer et al., 2001).
For this drug, only one polymorph was known when it was
launched (1996), and it was marketed as a liquid-capsule filled
with the drug dissolved in a mixture of ethanol, surfactant and
water. Two years after ritonavir was marketed a new and thermo-
dynamically more stable polymorph, which was four times less
soluble than the marketed polymorph, was identified. This resulted
in a temporary withdrawal of ritonavir followed by subsequent re-
launch in 1999. Two approaches were taken to manage this re-
launch. The synthesis scheme was refined to identify two different
processes resulting in pure polymorph I (the metastable poly-
morph) or pure polymorph II (the thermodynamically stable poly-
morph). Furthermore, a formulation was designed to accommodate
the less soluble polymorph II (Chemburkar et al., 2000; Bauer et al.,
2001).

The ritonavir case shows that polymorphic transitions may
have great impact on the performance of the drug product. How-
ever, the general consensus is that expected changes in Sapp associ-
ated with polymorphic changes generally are low. Typically the
Sapp of the metastable polymorph as compared to that of the ther-
modynamically stable polymorph differ no more than a factor of
two, although higher ratios have also been observed (Pudipeddi
and Serajuddin, 2005). A similar trend has been observed for the
Sapp ratio of the thermodynamically stable anhydrate as compared
to the solubility of the hydrate. However, the pseudopolymorphs
tend to result in slightly higher ratios than those observed for non-
solvated polymorphs. It needs to be stressed that when comparing
the thermodynamically stable polymorph to other obtained poly-
morphs the stable polymorph has the lowest solubility whereas
when comparing with hydrates, the latter has the lowest solubility
in water. The same thermodynamic principles apply for dissolution
rate meaning the stable polymorph dissolves the slowest.

In contrast to the relatively modest changes in solubility ob-
served for different polymorphs, solid state transformation pro-
ducing the amorphous state results in significantly higher Sapp as
compared to that obtained for the stable crystalline polymorph
(Hancock and Parks, 2000; Weuts et al., 2011). For example, the
amorphous Sapp can be calculated from Tm, enthalpy and entropy
of fusion, and isobaric heat capacities, as described by Hancock
and Parks (Hancock and Parks, 2000). For glibenclamide, this re-
sulted in a ratio (calculated amorphous solubility over the solubil-
ity of the crystalline material) of 1600 whereas the experimentally
measured ratio was much lower most likely due to strong ten-
dency for re-crystallization during the dissolution. In any case,
the amorphous state shows great promise increasing the dissolu-
tion rate and apparent solubility and hence, early information on
the inherent propensity of the API to remain in its amorphous form
is warranted. It has recently been shown that this property can
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accurately be predicted from molecular structure (Mahlin et al.,
2011). In addition, molecules with molecular weight >300 have
been suggested as possible to transform to the corresponding
amorphous state by standard amorphization technologies such as
spray drying or melt quenching (Mahlin and Bergstrom, 2013).

From the material presented above it becomes clear that it is of
utmost importance to characterize the solid state of the API batch
and relate the solubility and/or dissolution rate that is determined
to the solid form that was present. Further, the solid state needs to
be characterized throughout the development process to keep
track on possible solid state transformations that may occur during
storage or during scale-up. Similarly, there is increasing evidence
in the literature of solid state transformations occurring also dur-
ing dissolution. To further improve the mechanistic understanding
of the dissolution process, the experimental setup has recently
been extended with visualization techniques (ActiPix Technology,
Sirius) and Raman spectroscopy to identify solid state transforma-
tions during dissolution in situ (Rantanen, 2007; Strachan et al.,
2007; Savolainen et al., 2009). The dissolution and solubility mea-
surements will become more complete through these approaches.

4.6. Early assessment of supersaturation and excipient effects during
dissolution

An important aspect of API interrogation associated with solu-
bility is the tendency of the API to supersaturate and if it does
supersaturate, to evaluate whether this effect is long-lived. Sev-
eral assay methodologies have been developed in this context
including the solvent shift/quench paradigms at 10 mL scale using
medium to low throughput (Vandecruys et al., 2007; Warren
et al., 2010; Bevernage et al., 2013), 96-well high throughput ap-
proaches tied to this concept (Brewster et al., 2011; Yamashita
et al., 2011) and titration based approach for ionisable com-
pounds, implemented on the Sirius T3 platform (Box et al.,
2006; Box and Comer, 2008; Hsieh et al., 2012). The same tech-
niques have also been applied to assess the effect of excipients
on tendency of API’s to supersaturate with reference to supersat-
uration extent and duration (Warren et al., 2013). The solvent
shift method relies on supersaturation generated by adding a con-
centrated solution of the poorly water-soluble drug of interest in
a water-miscible organic solvent to an aqueous media (Bevernage
et al., 2013). The rate and extent of precipitation is assessed
either in a simple buffer or media or in the presence of an excip-
ient that may act to inhibit nucleation and/or crystal growth. The
titration based protocol is a potentiometric procedure which rap-
idly measures the equilibrium aqueous solubility of organic acids,
bases, and ampholytes that form supersaturated solutions. In this
procedure, the equilibrium solubility is actively determined by
changing the concentration of the neutral form by adding acidic
or basic titrants and monitoring the rate of change of pH due to
precipitation or dissolution (Box et al., 2006). Supersaturation
evaluations have been conducted using buffers, simulated fluids
including biorelevant fluids as well as aspirated HGF and HIF
(Bevernage et al., 2010, 2011, 2012; Psachoulias et al., 2011).
The influence of an absorption component (e.g. Caco-2 cells) on
the maintenance of supersaturation has been investigated and
this experimental set up reduce the precipitation in vitro (Bever-
nage et al., 2013).

4.7. Wettability

Wettability is important as it is a prerequisite for processes
such as disintegration, dispersion, solubilisation and dissolution
(Lippold and Ohm, 1986; Buckton and Darcy, 1995; Brown et al.,
1998; Cheema et al., 2007; Tian et al., 2007; Buch et al., 2011)
and can have direct implication on drug stability (Morris et al.,
2001; Ohta and Buckton, 2005). The wettability of a certain API will
also influence the manufacture processes of drug products indi-
rectly, e.g. granulation and coating (Asthana and Sobczak, 2000),
and ultimately impacting the drug product quality specification
and its clinical behaviour. Wettability is described by the wetting
angle, h, of the liquid to the solid in the presence of the gas as de-
fined by the Young equation (Young, 1805). As the tendency of a
drop to spread out over a flat, solid surface increases, the contact
angle decreases. If h < 90� wetting of the surface is favourable,
whereas if h > 90� (i.e. the fluid minimizes the surface contact
through formation of a compact liquid droplet) wettability is poor
(Shafrin and Zisman, 1960).

Four principal wetting models to determine h with solids are
described in the literature: the spread or sessile, the capillary rise,
the immersional and the condensational or adsorptive (Lazghab
et al., 2005) of which the spread/sessile and capillary rise methods
are the most commonly used for pharmaceutical materials. The
spread wetting procedure involves deposition of a given amount
of liquid on the solid API. The liquid will spread over the surface
of the API and h is determined at the three phases (solid/liquid/
gas) contact line. In the capillary rise method the API powder is
packed under controlled conditions in a cylindrical cell with a por-
ous bottom. The wetting is based on the capacity of the liquid to
rise in the powder bed and h is then calculated from the rate of li-
quid penetration using the Washburn model (Washburn, 1921;
Galet et al., 2010). Sessile methods have been used for measure-
ment of h of large single crystals and have been widely applied
to compressed discs of pharmaceutical powders (Harder et al.,
1970; Buckton and Newton, 1986; Puri et al., 2010). The advantage
of this method is that the h can be determined directly by measure-
ment of the shape of the drop using microscopic visualisation
methods, e.g. Environmental Scanning Electron Microscopy ESEM
(Jenkins and Donald, 1999), Atomic Force microscope (AFM), or
goniometry (Extrand, 2004). The drawbacks with the sessile meth-
od is that it is sensitive to the conditions used and the results are
dependent on e.g. polymorphic changes on the surface during com-
pression (Buckton and Newton, 1986), drop volume, rate of drop-
ping and distance between dropper and surface (Baki et al.,
2010). Immersing approaches based on the Wilhelmy plate meth-
od have been published where the plate has been made of the com-
pound under investigation and the h is then determined upon
drawing the plate up from the liquid investigated (Chawla et al.,
1994; Sheridan et al., 1994). The Wilhelmy plate method has also
been modified to use a glass slide onto which drug compound
powder is glued. In this modified method h is measured after dis-
placement on the liquid (Dove et al., 1996; Pepin et al., 1997). Dove
and coworkers reported that the two Wilhelmy plate techniques
produced comparable results (Dove et al., 1996).

4.8. Permeability

4.8.1. Physicochemical tools
4.8.1.1. Surface activity profiling (SAP). Surface activity profiling
(SAP) describes the relationship between drug concentration and
the surface pressure of the drug solution and it has been postulated
that SAP can be used to assess API permeation across biological
membranes. Physiological membranes consist of a hydrophobic
core region and hydrophilic surfaces and are therefore described
as amphiphilic systems. This barrier is appropriate to view as an
anisotropic interfacial system (Bassolino-Klimas et al., 1993; Eytan
et al., 1996). Amphiphilic substances are able to penetrate into
membranes, with the penetration efficiency partly determined by
their ability to position themselves at the lipophilic–hydrophilic
interface (Tejwani et al., 2011). This latter aspect can be character-
ized by the cross-sectional area of the drug at the interface
(Petereit et al., 2010), while the incorporation of the drug into
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the interface can be measured by the change in the layer pressure.
Analogous to the importance of substance parameters such as
hydrogen bonding potential, molecular size, charge and lipophilic-
ity for permeation processes through membranes (van De Water-
beemd et al., 1996; Pauletti et al., 1997; Camenisch et al., 1998),
these parameters are also important for surface activity in solu-
tions and for interfacial orientation (Seelig et al., 1994). Amphi-
philic substances organize themselves at the air/water interface
in an anisotropic manner. For the hydrophobic effect, polarities
of the different phases are important. The dielectric constant of
the lipid bilayer interior (e = 2) and of air (e = 1) are comparable,
which is in contrast to that of water (e = 80). Thus it is postulated
that the orientation of amphiphilic substances at the air/water
interface is similar to their orientation at the luminal/lipid bilayer
interface (Gerebtzoff et al., 2004). Seelig et al. proposed that by cor-
relating surface activity values, such as CMC with membrane per-
meation data, it would be possible to predict the ability of APIs to
cross membranes (Seelig et al., 1994). Other relevant parameters
describing surface activity are the interfacial air/water partitioning
coefficient (K�1

AW ) and the cross sectional area (AS). These parame-
ters can be derived from Gibbs‘ adsorption isotherm (Suomalainen
et al., 2004; Petereit et al., 2010), which in dilute systems utilize
the concentration (C) of the API instead of the chemical potential
(Seelig et al., 1994). In addition the surface excess can be calculated
from Avogadro constant and the area requirement of the surface
active molecule at the interface (Gerebtzoff et al., 2004). In other
experiments, the surface pressure (P) rather than surface tension
(c) is measured, and plotted versus ln C to derive dP/dlnC and cal-
culate CMC and K�1

AW of an amphiphilic substance (Fig. 11) (Suom-
alainen et al., 2004).

4.8.1.1.1. Surface tension measurement. Two different applica-
tions of surface tension measurement techniques are currently
used; the dynamic surface tension (DST) which measures the
change in surface tension during the formation of a new liquid/
air surface over time and static surface tension (SST) which mea-
sures surface tension of an already-formed interface. DST is typi-
cally measured with the bubble pressure tensiometer (Eastoe and
Dalton, 2000; Fainerman and Miller, 2004), whereas SST typically
is measured with the Wilhelmy plate method (see Section 4.7)
and the Du Nouy Ring method. The DST and SST methods are
time-consuming and require relatively large liquid volumes
(P10 mL) and are therefore not suitable in early physicochemical
profiling. A 96-well multichannel microtensiometer has therefore
been developed by Kibron (Finland). This method is based on the
Fig. 11. Substance concentration versus the corresponding surface pressure value.
Adopted from Suomalainen et al. (2004). Abbreviations used: CMC, critical micellar
concentration; K�1

AW , interfacial air/water partitioning coefficient; (P), surface
pressure; C, concentration.
Du Nouy ring method, but instead of rings the probes are designed
as eight needles, each of which is attached to a balance measuring
the individual force exerted. The measurements are automated and
are performed in a medium throughput mode requiring sample
volumes of only 50 lL (Kansy et al., 1998; Suomalainen et al.,
2004).

4.8.1.2. Artificial membranes. Physicochemical methods such as the
SAP mentioned above and artificial membranes depend on the
assumption that transcellular passive diffusion across the intesti-
nal epithelium is the main route of absorption (Sugano et al.,
2010). Examination of the molecular properties of registered oral
drugs supports this assumption since the majority of these drugs
have physicochemical properties that are optimal for rapid diffu-
sion into and out of the cell membranes (Wenlock et al., 2003).
The most common artificial membranes are composed of phospho-
lipids often in combination with physiological proportions of other
membrane lipids (Kansy et al., 1998; Sugano et al., 2004; Avdeef
and Tsinman, 2006). These lipids are deposited onto membranes
such as the Transwells, where the lipid fills the pores of the filter
membranes used. Typically, the assay is considered a simplified
permeability assay, in which the API is dispensed onto the lipid
membrane and the concentration obtained in the acceptor cham-
ber is determined after a certain time interval. The obtained results
are then used to bin compounds into classes such as good/interme-
diate/low permeability and/or to rank compound libraries for their
permeability properties. One draw-back with the artificial mem-
branes is that the length of the pores of the filter support, which
will be filled with the lipid solution used, is much longer than
the length of a cell membrane lipid bilayer and hence, will accom-
modate many multiples of such layers in a series. This creates an
in vitro artifact that slows down the permeation across these mem-
branes as compared to the permeation found in e.g. the enterocyte.
Both theoretical calculations and experimental approaches, such as
pH shifts have been used to rectify this problem (Avdeef et al.,
2005; Avdeef et al., 2007). Application of these approaches is re-
quired for quantitative extrapolation to in vivo permeability but re-
quires expert knowledge. Often, such quantification is not
necessary to perform during the early stages of drug discovery
where it is considered sufficient to bin compounds with regard
to high or low permeability.

4.8.2. Cell-based models
More than two decades after their introduction (Hidalgo et al.,

1989; Artursson, 1990; Hilgers et al., 1990), cultures of cell mono-
layers, such as Caco-2, are still routinely used in drug development
to assess intestinal drug permeability. Although the cell-based
models cannot compete with artificial membranes with respect to
speed and price, they are applied when more quantitative informa-
tion is required. Since Caco-2 monolayers can withstand quite vig-
orous stirring conditions, good estimates of passive permeability
coefficients in the vicinity of those observed in human in vivo can
be obtained (Artursson and Karlsson, 1991; Lennernäs et al.,
1996). For compounds displaying an intermediate passive perme-
ability, it is more difficult to predict the intestinal permeability
in vivo since in all systems, including the perfused human intestine,
there is a steep relationship between permeability and absorption
(Lennernäs, 1998; Matsson et al., 2005). In this permeability range,
compounds tend to be more polar and have a slower distribution
into the cell membranes and/or they may be subjected to active
transport processes. In this case, cell monolayers are useful since,
in contrast to artificial membranes, they host these alternative drug
permeability pathways. One such alternative is the paracellular
route in which the drug molecule crosses the monolayer by passing
through the tight junctions between the cells. This route is consid-
ered to have limited contribution to the overall permeability,
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although it may be of importance for small hydrophilic molecules
(Adson et al., 1994, 1995). For studies of the impact of the paracel-
lular route, it is important to recognize that different cell lines ex-
press different pore populations, which is in agreement with the
in vivo situation. Thus, Caco-2 cells mainly express a paracellular
pore population that mimics the smallest of the two pore popula-
tions present in the human small intestine (Linnankoski et al.,
2010). This pore population is too small to allow identification of
molecules with significant paracellular permeability in vivo. In con-
trast, the conditionally immortalized rat fetal intestinal cell line 2/
4/A1 (Paul et al., 1993) mainly express the larger of the two pore
populations found in human and may therefore be a more suitable
tool for studies of the paracellular pathway (Linnankoski et al.,
2010). Interestingly, the leakier paracellular route in the 2/4/A1 cell
line has resulted in drug permeabilities of low permeable drugs that
are in good agreement with the corresponding human intestinal
permeabilities (Tavelin et al., 2003).

The contribution of the many transport proteins present in the
intestinal epithelium is considered to be of minor importance for
the average oral drug, and also for drug molecules that are sub-
strates to particular transporters. This is because the average drug
concentration in the intestinal lumen is considered to be suffi-
ciently high during the major part of the absorption phase to satu-
rate possible active drug transport pathways (Sugano et al., 2010).
Further, the expression of many drug transporting proteins seems
to be too low to be of significance (Hilgendorf et al., 2007),
although this needs to be verified when emerging protein expres-
sion data obtained from proteomics analyses of tissue from human
intestine can be accounted for. Recently, a new approach for calcu-
lating the maximal transport activity for a particular transport pro-
tein in a particular organ was proposed (Karlgren et al., 2012).
Notably, there are important exceptions in that polar drugs with
limited membrane distribution and structural resemblance of
nutrients or small peptides (e.g. molecules resembling small amino
acids and di-or tripeptides) can also permeate the enterocyte via
transport proteins. These transport proteins can actively transfer
the compounds across the membrane or facilitate other influx
mechanisms (Steffansen et al., 2010). Also several drug efflux pro-
teins of the ABC-transporter family are highly expressed in the
enterocytes and these are known to be transporters that accept a
variety of structurally different substrates (Raub, 2006; Giacomini
et al., 2010). In general, the efflux transporters do not constitute a
threat to the absorption of the average dosed (highly permeable)
oral drug (Fenner et al., 2009). For drugs given at low doses and
that have small therapeutic indices, the efflux transporters may
limit systemic exposure and may be sensitive to drug–drug inter-
actions (DDIs) potentially resulting in reduced drug safety (Engl-
und et al., 2004). An example of such a drug is digoxin, for which
regulatory agencies require DDI studies, starting with in vitro
assessment of permeability in the presence of an ABC-transporter
such as P-glycoprotein (Giacomini et al., 2010; Food and Drug
Administration, 2012; European Medicines Agency, 2013). To per-
form DDI investigations, cell models that express sufficiently high
amounts of the protein need to be used, and for this purpose Madin
Darby Canine Kidney (MDCK) cells over-expressing transport pro-
teins are often applied.

A drawback shared by the cell monolayer cultures discussed
above is that they lack a mucus layer produced by goblet cells;
an epithelial cell population different from those represented in
the commonly used cell monolayer models. Mucus layer producing
goblet cell populations have been cloned from the human intesti-
nal epithelial cell line HT29 (Wikman et al., 1993; Behrens et al.,
2001). Using such cell lines and isolated pure mucin and recon-
structed mucus (Larhed et al., 1997), it was shown that the mucus
layer does not provide a significant barrier to the average orally
administered drug. Although a small influence on lipophilic drugs
could be observed, this was not considered to be significant. In con-
trast, a significant effect could be observed for larger drugs such as
vasopressin and cyclosporine A (Larhed et al., 1997). For targets
that have ligands with physicochemical properties beyond the
Lipinski rule-of-five space it is likely that the mucus layer may
influence the final absorption. In analogy, large aggregates of
drugs, e.g. provided by formulations may get trapped in the mucus
layer. Co-cultures of Caco-2 and mucus producing HT29 cells are
not successful due to insufficient mixing between the cell lines in
monolayers (Wikman-Larhed and Artursson, 1995). Although this
was reported almost 20 years ago, cell-based models that better
mimic the in vivo situation have not yet been established.

Intestinal permeability of API is often determined by calculating
the concentration and surface area normalized permeability coeffi-
cient. Due to this normalization, comparison between different
models for assessment of permeability is possible. For instance, hu-
man intestinal permeability can be compared with that obtained in
a cell monolayer and has in many cases been found to be in good
agreement (Tavelin et al., 1999, 2002; Stenberg et al., 2001). This
is in contrast to the traditionally applied flux equation commonly
applied by physiologists and pharmacologists, which is system
dependent due to the different area available in different systems.
Another factor that impacts the permeation across various in vitro
membranes is the aqueous boundary (unstirred water) layer adja-
cent to the cells (Loftsson et al., 2007). In the unstirred situation, a
highly permeable compound may obtain a measured value that is
20-fold lower than the unbiased permeability obtained during stir-
ring. Standardized approaches for permeability coefficient deter-
minations have been proposed (Hubatsch et al., 2007) and would
be of great assistance for comparison of data between laboratories
and development of in silico models of predefined quality. Unfortu-
nately, to date there is no standardized way to determine these
permeability coefficients in the scientific community. Thus, vari-
able units, in vitro artifacts and precision of the measurements will
impact on the determined ‘permeability’. The level of precision re-
quired is often dependent on the stage of compound development.
In discovery stages, a permeability measurement producing a cat-
egorical number (high/low) above or below a certain value may be
sufficient to assure that absorption is not permeability-limited,
while in drug development a more exact value may be required
to model pharmacokinetic parameters such as Tmax and Cmax.

4.9. Analysis of drug absorption using physiology-based
pharmacokinetics (PBPK)

Since the early 1960s it has been possible to extract rudimen-
tary absorption data from an oral dose pharmacokinetic profile
(Wagner and Nelson, 1963). The predictions of in vivo performance
of drug products advanced with the introduction of non-compart-
mentally based pharmacokinetic models in the 1980s (Veng-
Pedersen, 2001) and recent advances include the ability to decon-
volute drug input functions providing in vivo dissolution informa-
tion and improved in vitro in vivo correlations (IVIVC) (Huehn and
Langguth, 2013). The availability of enhanced computational tools
has permitted the ‘whole body systems approach’ to be refined for
in vivo prediction using physiology-based pharmacokinetic (PBPK)
modelling. In PBPK properties of the drug and the system (i.e. the
body) are considered in a particular structural model (Rowland
et al., 2011). As an example, a more advanced dissolution absorp-
tion and metabolism model that was recently introduced, incorpo-
rates API related factors (e.g. solubility and dissolution) along with
biopharmaceutical features (e.g. intestinal permeability, influence
of transporter and enzymes) and effects of GI tract motility (Jamei
et al., 2009). Computational models combining these pieces of
information permit predictions of plasma profiles to be generated
and the influence of solubility and dissolution to be assessed along
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with the effect of modifications to these values (Wagner et al.,
2012; Willmann et al., 2012). In early stage development however,
human pharmacokinetic parameters are unlikely to be available
and scaling from animal data will be required. For a more detailed
background on drug absorption, PBPK and the impact of API prop-
erties on these outcomes, the reader is referred to a recent review
(Kostewicz et al., 2013).
5. Preformulation assays – an industrial perspective

The preformulation work in the pharmaceutical industry is de-
fined by the way the process has been organized and is normally di-
vided into discovery, development and commercial phases. The
profiling program varies from company to company, however,
whilst there is no formal definition of the process and the descrip-
tion of the milestones can vary between companies, there is a com-
mon understanding of key deliverables in terms of material
characterization required to advance to the next stage. In the drug
discovery process the purpose of investigating physicochemical
and pharmaceutical parameters are to predict the behaviour of the
compounds and identify risks. In the development program physico-
chemical parameters are determined to provide sufficient under-
standing for the chemical processing so that consistent quality can
be obtained and to optimise the formulation. A number of different
preformulation assays have been developed by the industry to com-
ply with the needs defined by the organization, as described in the
previous sections. This section will rather describe the assumptions
for the preformulation scientist in the different phases.

Data generated during profiling of compounds in the preformu-
lation phase have many applications and general goals are to (i)
identify developability and potential downstream issues, (ii) pro-
vide data to understand in vitro/in vivo results and to perform
structure property analysis, (iii) predict in vivo performance and
facilitate selection of compounds for preclinical and clinical inves-
tigations, and (iv) guide molecular structure modifications. The
ready availability of preformulation data during the drug discovery
phase allows project teams to make informed decisions on com-
pounds and formulations to advance to PK, biology and exploratory
toxicology studies. A robust preformulation program will also pro-
vide data to underpin candidate selection for progression to clinical
development and address pharmaceutical factors which could
potentially lead to attrition at a later stage of the development
process.
5.1. Target selection to lead finding

Target selection and lead finding deals with pharmacological
and molecular biological identification of the intended target and
disease state for the project (Tamimi and Ellis, 2009). Most of the
work is done in vitro and based upon available compound libraries
and custom synthesized libraries – this is where the project is de-
fined. At this early stage typical preformulation data are based
either on in silico predictions or simplified methods to measure
the aqueous solubility, logP and pKa. Further, medicinal chemists
focus on identifying good chemical starting points for lead optimi-
zation to avoid ‘‘molecular obesity’’ induced by high molecular
weight and logP (Keseru and Makara, 2009) resulting in poor AD-
MET properties (Gleeson, 2008; Waring, 2009, 2010; Gleeson
et al., 2011; Hann and Keseru, 2012). As mentioned previously,
logP is used as an indicator for several other physiological proper-
ties, such as intestinal and blood–brain barrier permeability, P-gp
efflux, metabolic liability, plasma protein binding and toxicological
risk (Gleeson, 2008; Gleeson et al., 2011).

In silico models to predict solubility are often based upon inter-
nally developed programs, particularly within the larger pharma-
ceutical companies, but commercially available software
packages capable of calculating different molecular descriptors
and properties are also used (Elder and Holm, 2013). Experimental
miniaturized high through-put screening (HTS) methodology are
used and several screening methods have been developed, the
most common being kinetic solubility determinations from a
DMSO stock of the API (Kerns, 2001; Lipinski et al., 2001; Bevan
and Lloyd, 2000; Avdeef, 2001; Pan et al., 2001; Chen et al.,
2002; Bard et al., 2008). At this stage of the discovery process,
the obtained kinetic solubility profile of lead compounds can pro-
vide some qualification for the developability of APIs. However,
there is a tendency to overestimate solubility values when using
kinetic solubility as compared to equilibrium solubility (Chen
and Venkatesh, 2004; Kramer et al., 2010; Saal and Petereit,
2012). This is governed by the propensity of a compound to crys-
tallize rather than its thermodynamic solubility and hence may
mislead the optimization process (Saal and Petereit, 2012). In spite
of these challenges, kinetic solubility is a good indicator of poten-
tial solubility issues that may occur during in vitro pharmacological
experiments performed in downstream development. Since such
assays use DMSO stock solutions and are conducted over a compa-
rably short time interval, high numbers of compounds may be
screened and eliminated from further development.

Lipophilicity, expressed as logP, can be predicted to a reason-
able level of accuracy by in silico methods, however, at the early
stages of discovery two main types of experimental methods are
also used (Hageman, 2010). These include determination by chro-
matographic methods, where several procedures have been pub-
lished (Boyce and Milborro, 1965; Braumann et al., 1983;
Kaliszan, 1990, 1992; Dorsey and Khaledi, 1993; Lambert, 1993;
Pagliara et al., 1995; Lombardo et al., 2000; Valko et al., 2001;
Yamagami et al., 2002; Gocan et al., 2006) or miniaturization of
an octanol/water shake flask (Gulyaeva et al., 2003). The chromato-
graphic process cannot directly model the bulk organic-water par-
titioning process since the non-polar stationary phase is an
interphase (immobilized at one end) and not a bulk medium (Nasal
and Kaliszan, 2006). The API interacts with the bonded hydrocar-
bon layer in the column (Tchapla et al., 1984). Therefore, the reten-
tion is affected by the surface density of the bonded alkyl chains
(Sentell and Dorsey, 1989). Despite these methodological differ-
ences, the data from the classical shake-flask logP determination
and the retention factor obtained from reversed-phase HPLC chro-
matographic systems comprising of a hydrocarbon silica stationary
phase and an aqueous mobile phase (log k) generally correlate rea-
sonably well (Novotny et al., 2000; Dai et al., 2001).

Software packages are used to predict pKa (Wan and Ulander,
2006), however, pKa determinations by CE, which only requires
small amounts of compound, is also feasible at this early stage
(Ishihama et al., 1994; Pang et al., 2004; Poole et al., 2004; Jia,
2005; Zhou et al., 2005). Determination of pKa by RP-HPLC has also
been explored, wherein the determination of the capacity factor
(k0) from retention time (t) of the API as a function of the pH is used
to calculate the pKa value (Kaliszan et al., 2004; Wiczling et al.,
2004). Both the CE assay and the HPLC-based methods are separa-
tion techniques, which can reduce the effect of impurities on the
pKa measurement. This may be a beneficial feature when deter-
mining pKa in the early stages of drug discovery. However, numer-
ous measurements are required, the mathematical treatment is
typically a manual process and the results will have poor accuracy
due to variable column/capillary interactions at different pH.

5.2. Lead optimisation

In the lead optimisation phase, preformulation input is impor-
tant in order to optimise the physicochemical properties of a
chemical series with the objective of improving the developability
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characteristics of the lead series. Lead optimisation may partly be
achieved with in vitro measurements of physicochemical proper-
ties such as those described in the previous section but in vivo
experiments to differentiate the properties of a lead series are an
important component of this phase of the discovery process. Dur-
ing the lead optimisation phase, more API is available, which al-
lows a company to choose to continue with screening
methodologies or switch to lower throughput but more rigorous
preformulation screening assays. From a preformulation perspec-
tive, solubility, lipophilicity and pKa are the most important phys-
icochemical parameters for the same reasons as previously stated.
Also permeability is usually included at this stage and is deter-
mined by artificial membranes or cell-based methods, all depen-
dent upon the need in the project. Lipophilicity is usually
determined both as logP and logD, either using high-throughput
(Section 5.1), shake-flask or potentiometric titration methods (Sec-
tion 4.2.1.2). Studies at Lundbeck have indicated that for com-
pounds with logP > 5 the shake-flask method is the most precise.
High quality data is also warranted for pKa during this stage, be-
cause of the large influence the charged species will have on the
pharmacokinetic profile. Most commonly, potentiometric and/or
spectrophotometric methods are used to measure pKa. The avail-
ability of the API as solid material means that thermodynamic sol-
ubility, typically in a phosphate buffer at pH 6.5 or 7.4, is
determined and used as a developability index. While the equilib-
rium solubility measurements most accurately represent the ther-
modynamic solubility, the resulting value will be dependent on e.g.
solute purity, solvent, chemical/physical stability in solution, time,
temperature, mixing conditions, solvent purity, adsorption to sur-
faces, pH and methodology, all of which are factors that may vary
in the discovery phase ((Alsenz and Kansy, 2007; Di et al., 2012).
Typically only one time point is used to measure the ‘thermody-
namic’ solubility in the discovery phase whereas several time
points may be measured at later stages of development to ensure
that the equilibrium solubility is reached. Interestingly, Saal and
Petereit (2012) recently investigated the thermodynamic solubility
of 465 research compounds. They reported that �60% of drug res-
idues examined after thermodynamic solubility were crystalline,
22% amorphous and the remainder of indeterminate crystallinity,
emphasizing the need for solid state characterization during solu-
bility assessment.

The lead optimisation phase may also include in vivo screening
studies where ensuring adequate systemic drug exposure is critical
to assess efficacy and toxicity. Early in vivo studies employ differ-
ent animal species (mouse, rat, rabbit, dog, guinea-pigs, monkeys,
etc.), as well as different routes of administration (oral, intraperito-
neal, intravenous, subcutaneous, etc.). Primarily subcutaneous and
oral routes are preferred, but the selected route for administration
is highly dependent upon the preferred experimental procedures
in a company, and the targeted disease. Consequently, the test for-
mulation has to accommodate a variety of species, routes of
administration, dose volumes, stability, pH, viscosity, osmolality,
buffer capacity and biocompatibility, whilst minimising local toxic
effects and avoiding interaction with pharmacological behaviour
models (Bittner and Mountfield, 2002; Lee et al., 2003; Neervan-
nan, 2006). Guidelines for both dosing volumes and excipient
acceptability in different preclinical species are available in the lit-
erature (Gough et al., 1982; Masini et al., 1985; Diehl et al., 2001;
Gould and Scott, 2005; Gad et al., 2006; Neervannan, 2006; Rowe
et al., 2006; Li and Zhao, 2007; Stella and He, 2008), but much of
this information is also kept within organisations as there are
disease model dependencies and different traditions with regard
to vehicles employed. For instance, the vehicle requirements for
a single dose pharmacokinetic investigation are much less strin-
gent than those defined for long term dosing in regulated toxicity
studies. The rising awareness of the biopharmaceutical challenges
posed by current discovery pipelines (Lipinski, 2000; Lipinski and
Hopkins, 2004), places increased emphasis on ensuring that the
development and composition of these early formulations ade-
quately consider the biopharmaceutical properties of the selected
API. The formulation systems are normally based upon investiga-
tion of the thermodynamic solubility in the vehicle and all the clas-
sical solubilisation techniques that are currently employed. These
include pH adjustment, cosolvents, cyclodextrin complexation,
surfactants, but also more sophisticated pharmaceutical systems
such as amorphous solid dispersions and lipid-based formulations
(Neervannan, 2006; Li and Zhao, 2007; Maas et al., 2007; Porter
et al., 2007; Al-Ghananeem et al., 2010; Gopinathan et al., 2010;
Kwong et al., 2011; Higgins et al., 2012; Zheng et al., 2012). Re-
cently the use of suspensions, in particular nano-suspensions, in
the discovery phase has gained interest (Merisko-Liversidge and
Liversidge, 2008; Kesisoglou and Mitra, 2012; Talekar et al., 2012).

5.3. The drug discovery/development interface and preclinical
development

To cross the interface between drug discovery and drug devel-
opment the number and sophistication of the measured parame-
ters increases significantly. The pharmaceutical developability of
a lead candidate is evaluated to provide a project risk assessment
of formulation development. The initial work performed during
lead optimization will hopefully be of sufficient quality to provide
guidance for the selection of enabling technologies with the high-
est chance of success.

Larger amounts of pure compound are now available allowing
re-investigation of logP/D and pKa. A complete pH-solubility profile
can be determined and combined with high quality permeability
measurements performed in Caco-2 or MDCK cell lines to provide
a preliminary BSC/ Developability Classification System (DCS) clas-
sification (Amidon et al., 1995; Larhed et al., 1997). Typically disso-
lution and solubility are assessed in simulated GI fluids to provide
more realistic estimations of the intestinal solubility (and stability)
than that obtained using pure buffers. The thermodynamic solubil-
ity protocol at this development stage normally includes investiga-
tion of the solid residue by XRPD to identify which solid form is in
equilibrium with the solvent. A mini-salt screen may be conducted
to evaluate the salt forming potential of a lead compound and pro-
vide options for purification during crystallization. The timing of
salt (and also solid form) selection will typically depend on the
development challenges facing the compound. In some cases,
extensive screens will be deferred until after proof-of-concept in
man, e.g. when the biopharmaceutical profile of the lead candidate
is considered to pose low risk in several areas. In cases where a salt
is important to allow proof-of-concept in man, e.g. to increase dis-
solution rate or supersaturation propensity, salt screening will get
higher priority. The interested reader is referred to recently pub-
lished reviews in the field (cf. Elder et al., 2013; Kumar et al.,
2007). Stress stability studies will also be initiated to identify
chemical instability and light sensitivity. For these studies the
compound in solution is normally exposed to oxygen, light and a
wider pH range (1–10) at elevated temperature in solution. If sig-
nificant degradation is observed, a more thorough investigation of
the impact on in vivo bioavailability is conducted. Typically, chem-
ical stability in biorelevant media at more relevant in vivo concen-
trations are performed and includes examination of the
degradation kinetics, elucidation of degradation mechanism and
determination of pH where stability is at a maximum.

The pharmaceutical developability assessment conducted in
several different companies has been published (Balbach and Korn,
2004; Balani et al., 2005; Li and Zhao, 2007; Maas et al., 2007; Ku,
2008; Kawakami, 2009; Saxena et al., 2009; Palucki et al., 2010).
This consists of in vivo determinations of the bioavailability and
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plasma half-life as an investigation of biopharmaceutical proper-
ties. For this purpose a decision tree in which both solutions and
suspensions are dosed in animals has been used to investigate
the feasibility of using traditional dosage forms. This has been
exemplified by Branchu et al. (2007), who found that enabling
techniques were possible to forecast for APIs based on log dose
number, hydrogen bond donors (HBD), logD and molecular surface
area. Furthermore, standardization of screening approaches to
identify the need for enabling formulations has been suggested
(Mackie et al., 2008). Here, the API is dosed to rats as either a sus-
pension in methocel or as a solution in 20% aqueous 2-hydroxypro-
pyl-b-cyclodextrin (dose of 10 mg/kg). This is compared to a
2.5 mg/kg i.v. typically dosed in a cyclodextrin vehicle. A similar
protocol can be used in dogs at a dose of 5 mg/kg. Dosing of solu-
tion and suspension may lead to equivalent exposure with high
absolute oral bioavailability (defined as a solution/suspension
AUC ratio of between 0.8–1.2 and an oral bioavailability >0.6),
which aligns with a DCS/BCS category of class 1 or class 1-like.
Similarly, exposures between the solution and suspension can be
similar but with an overall low BA suggesting either a BCS 3 or
3-like material, or significant first pass metabolism. In some cases,
the AUC generated by the solution may be much higher than that
associated with the suspension. Mackie and colleagues (2008) de-
fined this as a solution versus suspension exposure ratio >3. This
ratio is used to identify APIs for which solubility or dissolution rate
of the solid API is limiting oral BA. For other APIs, the suspension
may produce a higher exposure than the solution. This may
encounter for APIs that are chemically degraded under the acidic
conditions in the stomach or for those that precipitate from solu-
tion in a less soluble form than that present in the suspension.
Those compounds exhibiting similar exposure from solution and
suspension can use conventional formulation strategies. However,
those APIs with a high solution/suspension exposure ratio are
likely to require enabling formulations strategies, whereas com-
pounds with a low solution/suspension exposure ratio need enteric
coating or other technology approaches. A similar approach was ta-
ken in a recent IVIVC study in which certain dose / solubility ratios
of the API at various pH were to identify whether solubilisation
technology would be needed during future development of solid
oral dosage forms (Muenster et al., 2011). In this study, a correla-
tion of dose/solubility ratio at various pH with in vivo dissolution
data in rat was found. A good IVIVC was observed at pH 4.5 and
7, but it was much less predictive at pH 1. This was expected, since
rat stomach pH is known to be between 3.8 and 5 (Kararli, 1995).
Hence, it was reported that 50% drug release in the rat GI tract cor-
responded to almost complete in vivo dissolution in humans.

Even though the process and stages at which in silico, in vitro
and in vivo assays are performed may differ between various
R&D organizations, all studies and results finally lead to an overall
developability risk assessment. This risk assessment is the basis for
management decisions on whether (or not) to proceed with a pro-
ject into development. Furthermore, the risk assessment facilitates
the project transfer from the research into the development
program.

5.4. Clinical development program

At this stage, pharmaceutical formulations are prepared for
administration to patients. Assessment of in vivo absorption en-
ables the identification of compound/formulations liabilities and
provides a basis for the early initiation of development strategies
to overcome these problems. In vitro and in vivo characteristics of
drug molecules gathered during drug discovery (e.g. dissolution,
solubility, stability in fluids at the site of administration, PK in pre-
clinical species), are useful inputs for subsequent clinical formula-
tion development. Here, suitable formulation types and
technologies are developed to meet biopharmaceutical targets for
clinical development. Building the relationship between API prop-
erties and drug product performance is crucial at this stage to guar-
antee adequate product performance and clinical behaviour of a
formulation in vivo.

The basic compound characteristics are normally re-evaluated
during development using methods producing data with high
quality. This includes redetermination of all the parameters de-
fined in the previous section, in particular when the final solid
form (e.g. salt and polymorph) has been selected and the clinical
therapeutic dose is better defined. Also, investigations on com-
pound/excipient compatibility are performed. In addition to the
BCS, calculation of the Solubility Limiting Absorbable Dose (SLAD)
(Butler and Dressman, 2010), Maximum Absorbable Dose (MAD)
(Curatolo, 1998) and parameter sensitivity analysis are simple
models used during formulation development to estimate the im-
pact of certain API parameters like particle size distribution, solu-
bility and permeability on absorption in relationship to the
clinical dose. Models that estimate risk for solubility-related food
effects are applied to investigate the need to develop a ‘food resis-
tant’ formulation. These models should be applied as early as pos-
sible during the process to avoid reformulation and further clinical
testing later in the development. Physiological models like Ad-
vanced Compartmental Absorption and Transit (ACAT) and PBPK
have become an integral part of the development strategy in par-
ticular to predict impact of formulation on poorly soluble drugs.
Such models rely on physicochemical parameters used as inputs
and accurate measurements of these properties are required for
successful simulations. Furthermore, the impact of excipients on
e.g. dissolution rate and apparent solubility will improve the pre-
dictions of oral absorption and guide efficient clinical formulation
development.
6. Physicochemical understanding of the API: future
perspectives

Even though a large physicochemical screening platform is fun-
damental to the selection of preclinical drug candidates, API still
often fail during preclinical testing and during first in man studies.
Given the points discussed in this review increased efforts should
be directed to obtain improved:

� In silico models for prediction of ADME properties of contempo-
rary libraries. These need to be quantitative rather than qualita-
tive and include physiologically relevant properties such as pH-
dependent solubility, dissolution rate and apparent solubility in
the context of the intestinal environment, intestinal permeabil-
ity (passive and active) and toxicological risk assessment based
on the absorbed amount to the systemic circulation.
� Miniaturized methods. As initial screening is conducted when

the amount of compound is limited, methods to forecast
in vivo performance need to be scaled down to become applica-
ble at this stage. The ability to automate the established minia-
turised methods is also important to consider. Desirable
miniaturised methods include (i) simultaneous assessment of
solubility-permeability interplay using simulated intestinal flu-
ids and cell-based models, with the possibility to assess formu-
lation performance and solid state characteristics of the
resulting API in situ, (ii) in vivo relevant precipitation risk
assessments and (iii) rapid and accurate physicochemical prop-
erty screening of highly lipophilic compounds (logP > 5) e.g.
logD6.5, logD7.4, pKa and pH-dependent solubility.
� Assessment of permeability. Highly accurate models for human

small intestine permeability using cell models containing the
correct contribution of passive and active transport
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mechanisms need to be developed. These models should also
include the impact of the unstirred water layer. In addition,
models to better assess the potential for colonic absorption of
APIs are of importance for development of controlled/extended
release formulations.
� Physicochemical profiling used to predict in vivo performance.

Many of the tools currently in use are based on knowledge of
their accuracy to predict ‘traditional’ marketed oral drugs cor-
rectly, but other properties may be of greater importance for
contemporary targets, such as deep intracellular nuclear tar-
gets, lipid metabolic pathways or neurotransmitter pathways,
with highly lipophilic endogenous ligands.
� GI models to forecast interindividual variability and effects of

disease states on absorption. This relates to further refinement
of simulated fluids used to mimic the GI dissolution profiles,
but also to the interplay between these fluids and cell monolay-
ers to better mimic the absorption.
� In vitro models assessing in vivo relevant supersaturation and

precipitation risk. The latter can be a result of the pH-change
in the GI tract or the changed solubilisation capacity of a partic-
ular formulation. Improved models for these properties would
increase the understanding of the pharmacokinetic profiles
and facilitate the early formulation work during the pharma-
ceutical developability assessment.

In the IMI funded OrBiTo project, several of these issues will be
addressed. Through the collaboration of a large number of pharma-
ceutical companies and academic groups a new database will be
constructed in which the chemical space of the model compounds
used will be expanded into the chemical space of ligands to con-
temporary targets. This database will be characterized for its phys-
icochemical properties (e.g. logP, pKa, solubility, permeability, etc.)
and the resulting data will be used to develop new in silico models
available to the common research community. Further, new mod-
els are targeted to better forecast important processes taking place
during absorption, i.e. dissolution, solubilisation, wettability, pre-
cipitation and permeation. The measurement of these properties
should also be conducted in the presence of excipients to help eval-
uate drug product performance. The aim of making the amend-
ments discussed above is to improve the prediction of PBPK
models, with emphasis on the role of absorption.

As briefly discussed above, permeability models and methods
used to date have been developed based on drug compounds with
reasonable lipophilicity. The much more lipophilic ligands ex-
plored by the industry in the post genome era may produce erratic
results due to adhesion tendencies to the plastic components and/
or entrapment in cell membranes. These processes can result in
poor mass balance and a false low permeability. Further, the gut
wall metabolism may be more significant for such molecules than
for traditional drug-like molecules. Access to a large series of more
diverse and lipophilic drug molecules is crucial to improve and up-
date the methods to the chemical space currently being explored. A
simplified system as compared to the cell models, to forecast per-
meability has been suggested to be the SAP method. In agreement
with the problems experienced in the cell-based models, sub-
stances with non-amphiphilic, lipophilic structures with poor sol-
ubility in aqueous buffer solutions are the most challenging APIs
for the SAP method. For such substances, Petereit recently estab-
lished a modified SAP method, in which the influence of API incor-
poration during formation of micelles of 1,2-Dioctanoyl-sn-glcero-
3-phospho-I-serine (a phospholipid) on the CMC was established
(Petereit, 2011). The ratio of CMClipid/CMClipid+API provide a good
correlation to fraction absorbed (R2 = 0.83) at the same time as
the poor solubility was substantially overcome by the solubilizing
effect of phospholipids. This method may be used to estimate not
only the influence of self-association on API absorption, but also
the influence of distribution between mixed micelles present in
the intestinal fluid and membrane phospholipids, in order to pro-
vide a simple method for prediction of absorption.

Oral delivery of drug compounds is dependent upon dissolution
in the intestinal fluids. A firm understanding of the variations in
the intestinal content is therefore important for the robust devel-
opment of a formulation. As the intestinal composition may vary
in healthy and disease states it is important to understand the ef-
fect of such variations to produce simulated intestinal fluid rele-
vant for the particular research program. If this is performed
successfully the designed medium will provide a more realistic
and physiologically relevant dissolution profiling of importance
to specific patient populations. Further, refined tools to assess
supersaturation of the drug candidate are important to forecast
which enabling formulation type that would add most value to a
specific API. Thus, weak bases that supersaturate may offer an
advantage over those that do not and systems that can be influ-
enced in their ability to supersaturate through the aid of excipients
would have a higher chance of success during pharmaceutical drug
development. Currently, most supersaturation assays are reason-
ably unsophisticated and the relative contributions of primary
and secondary nucleation, crystal growth, hydrodynamic and
mechanical stress cannot be revealed and the impact of the absorp-
tion of the drug (i.e. disappearance of API from the solution) is not
correctly mimicked. Based on the limited data available, it appears
that these simple systems are over discriminating compared to the
in vivo situation, which is why there is a need for the development
of more accurate methods. The use of biorelevant media, appropri-
ate hydrodynamics and the incorporation of an absorption compo-
nent may rectify these issues. However, the establishment of new
tools allowing in vitro prediction of in vivo supersaturation and pre-
cipitation will be a complex task.

The current challenge is to generate new and improved under-
standing of the physicochemical parameters that are important for
drug performance. This will lead to better selection of compounds
in drug discovery, a better quantitative prediction of drug absorp-
tion and hence a better and more efficient pharmaceutical develop-
ment process. The points discussed above are part of the work that
will be performed in the OrBiTo project with the expectation that
the joint efforts of the pharmaceutical industry and academic part-
ners will successfully rectify some of the current problems identi-
fied in API pharmaceutical profiling.
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