
European Journal of Operational Research 202 (2010) 538–546
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.

A tabu search algorithm for scheduling pharmaceutical packaging operations

Luca Venditti a, Dario Pacciarelli a,*, Carlo Meloni b

a Dipartimento di Informatica e Automazione, Università Degli Studi Roma Tre, Via della Vasca Navale, 79, 00146 Roma, Italy
b Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy

a r t i c l e i n f o
Article history:
Received 19 February 2008
Accepted 22 May 2009
Available online 23 June 2009

Keywords:
Scheduling
Packaging
Tabu search
Pharmaceutical industry
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.05.038

* Corresponding author.
E-mail addresses: venditti@dia.uniroma3.it (L.

uniroma3.it, pacciare@dia.uniroma3.it (D. Pacciarel
(C. Meloni).
a b s t r a c t

This paper addresses a practical scheduling problem arising in the packaging department of a pharma-
ceutical industrial plant. The problem is modeled as a multi-purpose machine scheduling problem with
setup and removal times, release and due dates and additional constraints related to the scarce availabil-
ity of tools and human operators. The objective functions are minimization of makespan and maximum
tardiness in lexicographic order. Representing a solution with a directed graph allows us to devise an
effective tabu search algorithm to solve the problem. Computational experiments, carried on real and
randomly generated instances, show the effectiveness of this approach.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we address a multi-purpose machine scheduling
problem [22] with additional constraints related to the availability
of tools and operators, removal and setup times, release times, due
dates and deadlines. The objectives are the joint minimization of
makespan and maximum tardiness, which are addressed in lexico-
graphic order. The problem is motivated by the practical imple-
mentation of a decision support system for scheduling the
production orders at the packaging department of a pharmaceuti-
cal plant located in Italy. A detailed description of the problem is
given in Section 2. Previous attempts to design a computerized tool
for production scheduling at this department have had limited suc-
cess, and similar performance has been observed in practice for
many computerized tools for planning and scheduling [11,12]. A
common reason for this behavior is that the models adopted by
computerized systems suffer from excessive simplification and
do not incorporate all the relevant aspects of the shop floor [24].
In fact, most optimization algorithms from the scheduling litera-
ture are mainly concerned with the computation of optimal or
near-optimal solutions to very simplified problems [16,20].
According to the survey of Reisman et al. [18], out of 170 articles
on flowshop scheduling/sequencing published from 1952 to 1994
only 5 were judged to be true applications. On the other hand, in
the last years an increasing number of articles focus on realistic
scheduling models including more practical constraints than in
the past [15,17,20]. However, to the best of our knowledge, no pub-
ll rights reserved.

Venditti), pacciarelli@dia.
li), meloni@deemail.poliba.it
lished work addresses exactly the problem studied in this paper,
even though many algorithms have been proposed to solve relax-
ations of this problem, addressing different subsets of constraints.
Among the others, we cite the parallel machine scheduling prob-
lems with setup and removal times, release and due dates [21],
the vehicle routing problem with fixed number of vehicles and
time windows [2,3,5] and the resource constrained scheduling
problem [4].

In this paper we propose a graph representation of the problem
and a tabu search algorithm, described in Sections 3 and 4, respec-
tively. The Tabu Search (TS) metaheuristic [8,9] is a well estab-
lished iterative algorithm with steepest descent criterion, which
accepts non-improving moves to escape from local minima and
makes use of a tabu list to restrict the neighborhood to be ex-
plored at each step. A move in the tabu list is forbidden and re-
mains in it for a limited number of iterations, called the length
of the tabu list, which can be fixed or variable. This mechanism
can be overruled when a solution associated with a tabu move
satisfies an aspiration criterion. More sophisticated TS schemes
have been proposed in the literature [7,14], and this method is
certainly among the most successful heuristics for a large number
of planning and scheduling problems [13]. In Section 5 we report
on our computational experiments, carried on real industrial in-
stances and on randomly generated instances. The comparison
with the industrial practice shows the effectiveness of our
approach.
2. Description of the problem

The production of pharmaceutical packages is driven by whole-
saler orders. A schedule for the next two weeks is produced every

mailto:venditti@dia.uniroma3.it
mailto:pacciarelli@dia.uniroma3.it
mailto:pacciarelli@dia.uniroma3.it
mailto:pacciare@dia.uniroma3.it
mailto:meloni@deemail.poliba.it
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546 539
week, following a rolling horizon criterion. In the week preceding
the packaging, different kinds of tablets are produced in the man-
ufacturing area and stored in sealed bins. Then, in the packaging
department, bins are re-opened and processed to produce final
products. The packaging department studied in this paper contains
three packaging lines working in parallel. Each line can process one
lot of identical products at a time and performs all operations from
the production of blisters to the final individual specific packages.
Therefore, a line acts as a single machine.

A set of production orders, hereinafter called jobs, have to be
scheduled on this set of machines. Each job is compatible with a
subset of machines and each machine needs two kinds of resources
to process a job: a tool, which defines the size of the blister and de-
pends on the job being processed, and a fixed number of operators,
which is the same for each production line. Human resources avail-
ability is constant within a shift, but it can vary from one shift to
another, the night shift being typically less supervised; machines
can be unavailable in given periods for preventive maintenance
operations. The considered scheduling problem is characterized
by different timing constraints. Job release times are determined
by the scheduled completion times at the earlier manufacturing
departments. Each job has a due date, while a hard deadline is de-
fined for urgent orders, when there is a risk of stock-out at the final
customers.

Modeling the practical scheduling problem requires to consider
a number of constraints and the incorporation of several details
into the model. Tools are shared among families of similar prod-
ucts and available in a limited number of copies, in most cases
there is a single copy of each tool. In each machine, sequence-
dependent setup and removal times occur before and after the
processing of a job, in order to clean and calibrate the machine
and to change the tool defining the blister size. The setup/removal
is called minor when requiring no tool change and major in the
latter case.

Cleaning operations, mechanical configurations and job pro-
cessing require a given amount of work for human operators,
therefore machines cannot process job nor execute setups or rem-
ovals without human resources. In order to reduce the risk of
cross-contaminations, the plant policy is to assign each operator
to a specific machine during the whole shift. Setups and removals
cannot be interrupted while the processing of a job on a machine
can be interrupted and resumed later on the same machine if the
machine becomes unavailable for planned maintenance or if the
number of operators in the subsequent shift is not sufficient to pro-
cess the job. Machine unavailability can be viewed as a special job
characterized by a release date, corresponding to its starting time,
a processing time, corresponding to its duration, and a deadline
corresponding to its finish time. Maintenance operations are com-
patible with a single machine, while the lack of operators can be
moved from a machine to another.

Summarizing the above description, we report the description
of this scheduling problem below, using the three-fields classifica-
tion scheme of Graham et al. [10] and the notation of T’kindt and
Billaut [22].

OMPMjri;di;Di;Rsd; Ssd;unavailjjLexðCmax; TmaxÞ

The first field contains the shop environment, in our case OMPM
is the Open shop Multi-Purpose Machines. In fact, the department
contains parallel machines but each job has its own set of ma-
chines and tools on which it can be processed and has to be as-
signed to one machine and one tool in its sets. Then the jobs
assigned to the same tool or machine must be sequenced. Viewing
the jobs assigned to the same tool as operations of an extended job,
the sequencing part of the problem is similar to an open shop
problem.
The second field contains the constraints of the problem. In our
case ri; di;Di, indicate the presence of release times, due dates and
deadlines, respectively. Rsd and Ssd indicate sequence-dependent
removal times and sequence-dependent setup times. Moreover,
resources (machines and operators) are not available all the time
but only during well defined periods. Notation unavailj indicate
this constraints. Specifically, in our case job processing is resum-
able, i.e., can be interrupted when the machine or the operators
become unavailable and resumed later (but no other job can
be processed in between). Setups and removals are not re-
sumable, i.e., they cannot be started if unavailability arise before
completion.

The third field contains the optimality criteria of the problem, in
our case LexðCmax; TmaxÞ is the minimization of makespan and max-
imum tardiness in lexicographic order.

We notice that, in the scheduling literature, even relaxed ver-
sions of this problem, such as the vehicle routing problem with re-
lease and due dates, are considered particularly difficult NP-hard
problems [16]. Moreover, some constraints, such as the resumable
unavailability of resources, are not frequently addressed in sched-
uling literature, at least in combination with others.

3. Graph representation of a solution

In this section, we introduce the notation used throughout the
paper and then we formally describe the constraints satisfied by
feasible solutions.

Problem data consist of the following. A set of n jobs J ¼
f1;2; . . . ;ng, each consisting of a single operation, must be sched-
uled on a set of m machines M¼ f1;2; . . . ;mg. Each job must be
processed entirely on the same machine, which can process at
most one job at a time. We denote with Mj #M the set of ma-
chines able to process job j. To process job j, a machine must be
equipped with a fixed number b of operators and with a tool Tj,
chosen in the set of tools T ¼ f1;2; . . . ; tg. We denote with
T j # T the set of tools compatible with job j. Also, let pj; rj; dj and
~dj be the processing time, release date, due date and deadline of
job j, respectively.

A given removal time gij is required, between two jobs i and j
processed consecutively on the same machine, to clean and cali-
brate the machine and to remove tool Ti if i and j use different
tools. If Ti–Tj an additional setup time fij is required after gij to
set up the new tool Tj. A similar situation occurs if job i is processed
on machine h0, job j is processed on machine h and both use con-
secutively the same tool. Letting bðiÞ the job sequenced after i on
machine h0 and aðjÞ the job preceding j on machine h, a removal
time gibðiÞ is required to remove the tool from h0 and a setup faðjÞj
is required to set up the tool on h. All setup/removal times satisfy
the triangular inequality, i.e., fij þ fjk P f ik and gij þ gjk P gik.

The number oi of operators available during shift i ¼ 1; . . . ; s is
known in advance, and operators must be assigned to the ma-
chines for the entire duration of a shift. Therefore, at most oi

b

� �
ma-

chines can be active during shift i. We model this situation by
introducing m� oi

b

� �
dummy jobs called unavailabilities, with re-

lease date, deadline and processing time equal to the shift start,
completion and duration, respectively. These jobs will be sched-
uled on the machines with all the other jobs. In some cases, the
subset of inactive machines for a shift is partially specified in ad-
vance, for example when preventive maintenance operations are
planned for some machines during that shift.

We denote with U ¼ fðnþ 1Þ; . . . ; ðnþ qÞg the set of all unavai-
labilities, with q ¼

P
i¼1;...;s m� oi

b

� �
b

� �
, and with Mu #M the set

of the machines compatible with unavailability u 2 U .
Finding a schedule consists of solving five subproblems. We

postpone the feasibility issue to the end of this section.

540 L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546
(i) Assign each job j 2 J to a machine h 2Mj. Let JMðhÞ be the
set of jobs assigned to machine h ¼ 1; . . . ;m.

(ii) Assign each job j 2 J to a tool k 2 T j. Let J TðkÞ be the set of
jobs assigned to tool k ¼ 1; . . . ; t.

(iii) Assign each unavailability u 2 U to a machine h 2Mu such
that unavailabilities assigned to the same machine are
non-overlapping. Let UðhÞ be the set of unavailabilities
assigned to machine h ¼ 1; . . . ;m, and l be the m-tuple
Uð1Þ;Uð2Þ; . . . ;UðmÞ.

(iv) Sequence the jobs in J MðhÞ;h ¼ 1; . . . ;m and the jobs in
J TðkÞ; k ¼ 1; . . . ; t. Let rh be the resulting sequence on
machine h and pk be the resulting sequence on tool k.
Let also r be the m-tuple r1;r2; . . . ;rm and p be the t-tuple
p1;p2; . . . ;pt .

(v) Define a schedule, i.e., a starting time Sj and a completion time
Cj 6

~dj for each job j 2 J such that each machine processes
at most one job/unavailability at a time. Let S and C be the
vectors of starting/completion time of all jobs,
S ¼ ðS1; S2; . . . ; SnÞ;C ¼ ðC1;C2; . . . ;CnÞ.

Let a solution H denote the triple H ¼ ðl;r;pÞ, i.e., the output of
subproblems ðiÞ—ðivÞ, and let a schedule denote the pair ðS;CÞ. For
each job j 2 J MðhÞ we denote with aðjÞ the job preceding j in rh

and with bðjÞ the job succeeding j in rh. Similarly, for each job
j 2 J TðkÞ we denote with cðjÞ the job preceding j in pk and with
dðjÞ the job succeeding j in pk.

Let us now focus on the computation of a minimum makespan
schedule of a solution H. In order to compute Sj and Cj we assume
that the preceding jobs aðjÞ and cðjÞ (if exist) have already set CaðjÞ
and CcðjÞ. We schedule non-preemptive activities gcðjÞbðcðjÞÞ; gaðjÞj and
faðjÞj in the earliest available time periods (see Fig. 1). Then we sche-
dule preemptive job j, possibly splitting it in successive availability
periods. Denoting with ð�Þ and ½�� open and closed intervals respec-
tively, the earliest available starting time for the removal activity
gcðjÞbðcðjÞÞ on machine h0 is

Xj ¼min s : s P CcðjÞ; ðs; sþ gcðjÞbðcðjÞÞÞ \
[

i2Uðh0 Þ

½ri;
~di� ¼ ;

8<:
9=;:

Similarly, the earliest available starting times for the removal
and setup activities faðjÞj and gaðjÞj on machine h are

Yj ¼min s : s P CaðjÞ; ðs; sþ gaðjÞjÞ \
[

i2UðhÞ
½ri;

~di� ¼ ;

8<:
9=;;

Zj ¼min

(
s : s P Xj þ gcðjÞbðcðjÞÞ; s

P Yj þ gaðjÞj; ðs; sþ faðjÞjÞ \
[

i2UðhÞ
½ri;

~di� ¼ ;

9=;:
If machine h is unavailable at the release time rj of job j, let uðjÞ be

the last unavailability on machine h starting before rj, i.e., such that
ruðjÞ ¼ maxfrl 6 rj; l 2 UðhÞg. Then, job j cannot start before Rj ¼
maxf~duðjÞ; rjg. Therefore, the earliest available starting time of j is:

Sj ¼ maxfRj; Zj þ faðjÞjg: ð1Þ
Fig. 1. Gantt chart for machines h
The earliest completion time of preemptive job j equals Sj þ pj

plus the total time machine h is unavailable for processing be-
tween the start and the completion of job j. Let us denote with
u1; . . . uv the sequence of unavailabilities in UðhÞ starting after Sj,
ordered for increasing values of their release times Sj 6 ru1 6

. . . 6 ruv�1 6 ruv , and let pu1
; . . . puv be their respective processing

time. Also, let uvðjÞ be the last unavailability on machine h before
Cj, i.e., vðjÞ ¼min l : Sj þ pj þ

Pl
i¼1pui

6 rulþ1

n o
. Then, the comple-

tion time of job j is:

Cj ¼ Sj þ pj þ
XvðjÞ
i¼1

pui
: ð2Þ

We denote the pair ðS;CÞ computed according to Eqs. (1) and (2)
as the schedule associated to solution H. Let us define for job j a
modified processing time p̂j ¼ Cj � Sj and a modified release
time r̂j

r̂j ¼
rj if Sj ¼ maxfCaðjÞ þ gaðjÞj; CcðjÞ þ gcðjÞbðcðjÞÞg þ faðjÞj
Sj if Sj > maxfCaðjÞ þ gaðjÞj; CcðjÞ þ gcðjÞbðcðjÞÞg þ faðjÞj

(
ð3Þ

A solution H and the associated schedule can be represented
with a graph GðHÞ ¼ ðV ; EðrÞ [FðpÞ [AÞ. V is the set of nodes, one
for each job j 2 J , weighted with p̂j, plus four auxiliary nodes
start; end;viol dead;viol due. EðrÞ is a set of arcs, one for each pair
of consecutive nodes j and bðjÞ processed on the same machine in H
and weighted with gjbðjÞ þ fjbðjÞ. FðpÞ is a set of arcs, one for each pair
of consecutive nodes j and dðjÞ processed on the same tool in H and
weighted with gaðdðjÞÞdðjÞ þ faðdðjÞÞdðjÞ. Finally, A is a set of additional
arcs. For each node j 2 J there is an arc in A from start to j, with
weight r̂j, an arc ðj; endÞ 2 A, with weight zero, an arc
ðj;viol deadÞ 2 A if a deadline is defined for j, with weight �~dj,
and an arc ðj;viol dueÞ 2 A if a due date is defined for j, with weight
�dj.

Fig. 2 shows the pictorial representation of a node j and
associated arcs in GðHÞ, where arcs in EðrÞ [A are depicted with
solid lines while arcs in FðpÞ are depicted with dashed lines.
Note that the graph structure depends on the assignment and
sequencing of the jobs on tools and machines, while the arc
weights also depend on the assignment of the unavailabilities
to the machines.

For a given graph G, we define the head hðjÞ of node j as the
length of the longest path in G from start to j (excluding the
weight of node j) and the tail qaðjÞ as the length of the longest path
from j to the auxiliary node a 2 fend;viol dead;viol dueg (includ-
ing the weight of node j). With this notation, the starting time Sj of
job j in a solution is the head of the node associated to job j. Then,
hðendÞ and maxf0;hðviol dueÞg are equal to the makespan Cmax

and the maximum tardiness Tmax of the solution, respectively.
A solution H is feasible if each job is assigned to a compatible

machine and to a compatible tool, each unavailability is assigned
to a compatible machine, unavailabilities assigned to the same ma-
chine are non-overlapping, and GðHÞ ¼ ðV ; EðrÞ [FðpÞ [AÞ is acy-
clic. A schedule ðS;CÞ is feasible if the associated solution H is
feasible and hðviol deadÞ 6 0, which implies hðiÞ þ p̂j 6

~dj for each
j 2 J .
and h0 and computation of Sj .

L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546 541
4. Tabu search algorithm

In this section, we describe our tabu search algorithm. The
Tabu Search is a local search based metaheuristic, which makes
extensive use of memory for guiding the search. Its basic compo-
nents are the concepts of move and tabu list, which restrict the
set of solutions to be explored. From the incumbent solution,
non-tabu moves define a set of solutions, called neighborhood,
the best of which is selected as the new incumbent also when
is non-improving. The tabu list keeps memory of the last moves
performed by the algorithm, and it is used to escape from local
optima and to avoid re-evaluating solutions that have been re-
cently visited.

Section 4.1 describes the algorithm used to find an initial solu-
tion, not necessarily feasible. Section 4.2 shows the basic moves
used by the tabu search algorithm and structural properties of
the neighborhood based on these moves. In Section 4.3 we define
a restricted version of the neighborhood, which is used by our tabu
search algorithm. Finally, in Section 4.4, we describe two proce-
dures to evaluate the quality of a neighbor.

4.1. Greedy algorithm

A fast and simple greedy algorithm is used to obtain an initial
solution. The algorithm is designed to reproduce the behavior of
human scheduler when building a feasible schedule. In fact, the
human schedulers in the plant do not follow any formal procedure
to schedule production orders, and the schedules are simply the re-
sult of intuition and past experience. However, the schedules pro-
duced by hand are quite similar to those produced with the
algorithm summarized in the following steps:

1. Compute an estimate workload for each machine as follows:
(a) Compute the minimum workload Wh for machine h 2 M

summing up processing time + minimum setup time +
minimum removal time of all jobs that can be executed
on machine h only: Wh ¼

P
j:Mj¼fhgðpj þminiffijg þmini

gijgÞ.
(b) Compute the quantity QðiÞ, equal to the processing time +

minimum setup time + minimum removal time of all jobs
that can be executed on machine h and other i machines in
M, and add to Wh the quantity QðiÞ

iþ1, for i ¼ 1; . . . ;m� 1.

2. Assign human operators to machines, proportionally to the val-

ues Wh;

3. Partition the time horizon into L time intervals of given length k,

and schedule the jobs in each time interval ½ðl� 1Þk; lk�, for
l ¼ 1; . . . ; L, according to the following algorithm:
(a) Let J l be the set of jobs with deadline or due-date smaller

than lk;
Fig. 2. Node j and weighted
(b) Group the jobs in J l requiring the same tool and sequence
the jobs in each group according to the ERD rule (Earliest
Release Date first rule);

(c) Sequence the groups one at a time by assigning a block to the
next available machine according the SST rule (Shortest
Setup Time first rule) until all groups are scheduled.
4.2. Neighborhood structure

Our tabu search algorithm makes use of two basic moves. The
first one is based on the interchange of a pair of adjacent jobs se-
quenced on the same machine/tool, which is commonly adopted
in the tabu search literature on open shop and job shop scheduling
problems [14]. The second move is based on removing a job from
the sequence of jobs processed on a machine/tool and inserting it
in the sequence of another machine/tool. Similar moves are com-
monly used when dealing with parallel machine scheduling or
vehicle routing problems [5,7].

The interchange move uMði; jÞ is defined as follows: given a solu-
tion H and a pair of consecutive jobs i and j in rh of machine h, a
new solution H0 is obtained from H reversing the precedence order
ði; jÞ. A similar move uTði; jÞ deals with rescheduling of consecutive
jobs i and j in the sequence pk of tool k. When two jobs are pro-
cessed consecutively both on the same machine h and tool k, then
a move uMTði; jÞ is applied, which exchanges their relative positions
both in rh and pk, in order to avoid a cycle of precedence con-
straints between i and j.

With the rerouting move hMði; jÞ; i can be either a job or an
unavailability while j is a job. Moreover, i and j are processed on
different machines h and h0, respectively, with h0 2 Mi. If i is a
job, this move consists of removing i from rh and inserting it before
j in rh0 . If i is an unavailability, the move consists of removing i
from machine h and inserting it in the same machine of j in its gi-
ven time window. Similarly, move hTði; jÞ is applied to jobs i and j
processed on different tools k and k0, respectively, with k0 2 T i.

4.2.1. Acyclicity property
A solution H is feasible only if the corresponding graph GðHÞ is

acyclic. Our tabu search algorithm does not perform moves leading
to cyclic graphs. To this aim, a cyclicity test is preliminarily
checked before each move and the move is removed from the
neighborhood if it leads to a cycle. The test can be performed in
time OðnÞ using the Bellman’s algorithm, but we next show that
this check can be performed in constant time if the conditions of
Theorems 4.1 or 4.2 hold.

In the following we call critical path of GðHÞ one of the longest
paths from start to one of the auxiliary nodes and denote H the
incumbent solution, H0 the solution obtained after a move, hðiÞ
the head of node i in H and h0ðiÞ the head of node i in H0.
sequencing arcs in GðHÞ.

542 L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546
Theorem 4.1. Given an arc ði; jÞ on the critical path of GðHÞ, the
interchange moves uMði; jÞ;uTði; jÞ, and uði; jÞMT do not create cycles.

Proof. Let us suppose that there is a cycle in GðH0Þ after a move
uði; jÞ. Thus, there must be a path in GðHÞ from i to j, disjoint from
arc ði; jÞ. Let us consider the three moves separately.

� uMTði; jÞ move: in this case j ¼ bðiÞ ¼ dðiÞ and there are no other
arcs outgoing from i, other than those ingoing in j or in the aux-
iliary nodes. Therefore, there is no path from i to j, disjoint from
arc ði; jÞ in GðH0Þ, a contradiction.

� uMði; jÞ move: in this case j ¼ bðiÞ. Let us suppose that a path p
from i to j exists in GðHÞ, besides arc ði; jÞ. This path must include
at least arcs ði; dðiÞÞ and ðcðjÞ; jÞ, which are the only arcs outgoing
from i and ingoing in j other than ði; jÞ and the arcs of set A. There
are only two possibilities: either Ti – Tj or Ti ¼ Tj. In both cases,
path p includes at least the removal of tool Ti, the setup of tool Tj

and the processing time pdðiÞ > 0. If Ti ¼ Tj the length of p is
strictly larger than the length of arc ði; jÞ. If Ti – Tj it follows from
the triangular inequality that the weight of all setups occurring
in p is larger or equal to gij þ fij. Therefore, the weight of p is
strictly larger than the weight of the critical arc ði; jÞ, a
contradiction.

� uTði; jÞ move: in this case j ¼ dðiÞ. Let us suppose that a path p
from i to j exists in GðHÞ, besides arc ði; jÞ. This path must include
at least arcs ði; bðiÞÞ and ðaðjÞ; jÞ, which are the only arcs outgoing
from i and ingoing in j other than ði; jÞ and the arcs of set A. Also
in this case, if follows from the triangular inequality that the
length of path p is greater than the weight of the critical arc
ði; jÞ, a contradiction.

In conclusion, path p cannot exist if the arc ði; jÞ is critical, and the
thesis follows. h

As far as the rerouting moves are concerned, let us first observe
that there can be a cycle in GðH0Þ after move hMði; jÞ if and only if
there is a path in GðHÞ from j to cðiÞ or from dðiÞ to aðjÞ. We notice
that, if j ¼ bðiÞ the acyclicity of GðHÞ implies that of GðH0Þ. Other-
wise, a sufficient condition for the acyclicity of GðH0Þ is given by
the following theorem. The proof directly follows from results
proved in [6].

Theorem 4.2. After a move hMði; jÞ, if hðjÞ þ p̂j > hðcðiÞÞ and
hðdðiÞÞ þ p̂dðiÞ > hðaðjÞÞ then GðH0Þ is acyclic.

Similar conditions hold for hTði; jÞ. When sufficient conditions
do not hold the algorithm explicitly checks the existence of a path
from i to j on GðHÞ, besides ði; jÞ. If such a path exists, the move is
removed from the neighborhood.

4.2.2. Connectivity
In this section, we show that the neighborhood defined by

moves uði; jÞ and hði; jÞ is connected, i.e., we prove that it is possible
to reach a global minimum starting from any feasible solution. Our
proof is similar to that reported in [6]. Let A be a resource assign-
ment, i.e., the definition of sets J MðhÞ;UðhÞ and J TðkÞ for each ma-
chine h 2 M and each tool k 2 T . Let HA [respectively, H�A] be a
generic [an optimal] solution associated to A. HA [respectively,
H�A] defines the sequences [the optimal sequences] rh and pk of ele-
ments in J MðhÞ and J TðkÞ for each h 2 M and k 2 T . We also call
GðHÞ the graph representation of H and GðHÞ its transitive closure,
i.e., the graph obtained from GðHÞ including all the redundant arcs.
A first result is the following:

Lemma 4.1. Given a resource assignment A, an optimal sequencing
H�A and a solution HA, if HA is not optimal there is an arc ði; jÞ such that
ði; jÞ is critical in GðHAÞ and such that ðj; iÞ 2 GðH�AÞ.
Proof. Let us suppose that all the critical arcs of GðHAÞ also belong
to GðH�AÞ as well. Therefore all the critical paths of GðHAÞ also belong
to G H�A

� �
, thus implying that H�A is not optimal, a contradiction.

Hence, there must be at least a critical arc ði; jÞ 2 GðHAÞ that does
not belong to G H�A

� �
, i.e., such that ðj; iÞ 2 G H�A

� �
. h

From this lemma the following theorem can be proved.

Theorem 4.3. Given a resource assignment A and a solution HA, if HA

is not optimal there is a sequence of interchange moves leading from
HA to an optimal solution H�A.

Proof. The proof directly follows from Lemma 4.1 and Theorem
4.1. Starting from HA and given an optimal solution H�A, Lemma
4.1 guarantees that there exists a pair of consecutive jobs that
can be reversed, and Theorem 4.1 guarantees that the resulting
solution, say eHA, is feasible. If eHA is optimal the thesis follows,
otherwise the same procedure can be repeated starting from eHA,
finally leading to an optimal solution. h

We have shown how an optimal sequencing for a given assign-
ment A can be reached starting from any solution. We next show
that an optimal assignment can be reached starting form any
assignment. To this aim, we prove the following preliminary result.

Theorem 4.4. Given a solution H, a machine h, a tool k and a job i,
compatible with machine h [with tool k], if i R JMðhÞ [if i R J TðkÞ]
there always exists a rerouting move that moves i to JMðhÞ
[respectively, to J TðkÞ] leading to a feasible solution.

Proof. Theorem 4.2 provides sufficient conditions for acyclicity
after a rerouting move. Therefore, to demonstrate the thesis, it is
sufficient to show that, if job i is compatible with machine h [with
tool k], and given rh [given pk], there are always in rh [in pk] two
consecutive jobs l and j such that i can be inserted between l and j.

We limit ourselves to prove this for move hMði; jÞ only, the proof
for hTði; jÞ being very similar. First observe that every arc in rh

always satisfies at least one of the two conditions in Theorem 4.2.
In fact, if the first condition is not true, then hðjÞ þ p̂j 6 hðcðiÞÞ. It
follows that hðlÞ < hðjÞ þ p̂j 6 hðcðiÞÞ < hðdðiÞÞ þ p̂dðiÞ. Similarly, if
the second condition is not true, then hðdðiÞÞ þ p̂dðiÞ 6 hðlÞ, which
implies hðjÞ þ p̂j P hðlÞ þ p̂l þ p̂j > hðlÞ P hðdðiÞÞ þ pdðiÞ > hðcðiÞÞ.
In particular the second condition is always satisfied for node start
and the first for at least an auxiliary node i 2 fend; viol dead;
viol dueg. Note also that i cannot satisfy the second condition.
Then, in rh there must be one last node l such that
hðdðiÞÞ þ p̂dðiÞ > hðlÞ and hðdðiÞÞ þ p̂dðiÞ 6 hðbðlÞÞ. Therefore, j ¼ bðlÞ
must satisfy the condition hðjÞ þ p̂j > hðcðiÞÞ, which concludes the
proof. h

Theorem 4.5. The neighborhood defined by moves u and h is
connected.

Proof. Consider an optimal solution H�. Theorem 4.3 shows that
starting from any solution HA it can be reached an optimal
sequencing H�A for the given assignment A. If H�A is not globally opti-
mal, there must be at least a job i which is assigned to a different
resource in H�A and H�. Theorem 4.4 guarantees that there exists a
rerouting move that moves i to the same machine as in H�, thus
leading to a new feasible solution H0. If H0 is optimal the thesis fol-
lows, otherwise the same procedure can be repeated starting from
H0, finally leading to an optimal solution. h
4.3. Neighborhood exploration

At each step of the algorithm we restrict the interchange move
to consecutive jobs (i and aðiÞ or cðiÞ) on a critical path, i.e.,

o

L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546 543
a longest path from start to one of the other auxiliary nodes. This is
a common strategy, e.g., when solving job shop scheduling prob-
lems [14]. In fact, as observed, e.g., in [23], resequencing consecu-
tive jobs that are not on the longest path from start to end cannot
improve the makespan. Specifically, we analyze a critical path from
start to viol dead when hðviol deadÞ > 0. Otherwise, we explore the
paths from start to end and viol due.

When dealing with the rerouting move hMði; jÞ, we can move
either jobs or unavailabilities. In the former case, we restrict the
choice of i to the jobs positioned on a critical path and j to those
nodes such that one of the two following conditions is satisfied:

� There is a strictly positive slack time Dj > 0 before j, on the
machine processing it, during which the machine is available
and not busy;

� j ¼ dðiÞ, i.e., j is the job using the same tool of i, immediately after
it.

When the number of operators in a shift is smaller than b times
the number of machines, we also allow to move unavailabilities.
We say that an unavailability u is critical if one of the two following
conditions holds: (1) there is a node j on a critical path of GðHÞ and
u interrupts the processing of job j; (2) r̂j > rj and ~du equals one of
the quantities Xj;Yj; Zj;Rj defined in Fig. 1. We allow moving an
unavailability i with move hMði; jÞ only if i is a critical unavailability.

4.3.1. Critical paths and extended critical paths
We define two different critical paths. One is the classical lon-

gest path on GðHÞ from start to a specific auxiliary node, i.e., the
path for which the sum of the arc weights is maximum. This path
might contain a small number of arcs when its first arc is a modi-
fied release time r̂j > rj. In this case r̂j is computed according to (3)
and can take into account the sequencing of a large number of jobs.
Therefore, the starting time of job j might be reduced as well by
anticipating the starting time of job aðjÞ; cðjÞ or by rerouting one
of these two jobs since their modification can affect the value of
r̂j. In other words, incorporating in the critical path a longest path
from start to node j different from arc r̂j, would allow a larger pos-
sibility to improve upon the incumbent solution. More formally, let
us consider an ordinary longest path from start to any auxiliary
node a 2 fend;viol dead; viol dueg, and let j be the first node after
start on this path. The extended critical path is recursively defined
as the path including all the nodes on the longest path plus the ex-
tended critical path from start to j. The latter quantity is the empty
set if Sj ¼ Rj holds in Eq. (1). If Sj > Rj then, if Yj þ gaðjÞj P
Xj þ gcðjÞbðcðjÞÞ the extended critical path includes the longest path
from start to aðjÞ, otherwise it includes the longest path from start
to cðjÞ. These paths are evaluated iteratively with the same
procedure.

4.4. Move evaluation

In the neighborhood of the incumbent solution H we look for a
solution H0 minimizing the following penalty function.

f ðH0Þ ¼ b �maxf0;hðv iol deadÞg þ c � hðendÞ þ d

�maxf0; hðv iol dueÞg: ð4Þ

We developed two alternative algorithms for evaluating f ðH0Þ after
a move. The first one gives an estimate of f ðH0Þ in constant time,
while the second provides the exact value of f ðH0Þ in linear time.
At each step of the tabu search, the neighbor with the smallest value
of f ðH0Þ is selected as the new incumbent, and the schedule is up-
dated accordingly. Then, according to the Eqs. (1) and (2) of Section
4.4.2, job starting and completion times are updated in GðHÞ. We
next describe the two evaluation algorithms.
4.4.1. Approximate evaluation
The approximate evaluation of f ðH0Þ consists of using heads and

tails of GðHÞ to estimate the length of a longest paths from start to
an auxiliary node end;viol dead, or viol due. We recall the notation
hðiÞ and qaðiÞ [respectively, h0ðiÞ and q0aðiÞ] to define the length of
the longest path in GðHÞ [respectively, in GðH0Þ] from node start
to i and from i to node a 2 fend;viol dead;viol dueg. With respect
to move uði; jÞ, the estimate L0a of the length of a longest path in
GðH0Þ from start to auxiliary node a is computed as an estimate of
the longest path passing through i or j:

L0a ¼ maxfh0ðiÞ þ q0aðiÞ;h
0ðjÞ þ q0aðjÞg: ð5Þ

As for the solutions obtained with the uMði; jÞ move, we have
(see Fig. 3):

h0ðjÞ ¼max Yi þ gaðiÞj þ faðiÞj; Xj þ gcðjÞbðcðjÞÞ þ faðiÞj; Rj

n o
h0ðiÞ ¼max h0ðjÞ þ pj þ gji þ fji; Xi þ gcðiÞbðcðiÞÞ þ fji; Ri

n o
q0aðiÞ ¼max pi þ gibðjÞ þ fibðjÞ þ qaðbðjÞÞ; pi þ gibðjÞ þ faðdðiÞÞdðiÞ þ qaðdðiÞÞ

n
q0aðjÞ ¼ max pj þ gji þ fji þ q0aðiÞ; pj þ gji þ faðdðjÞÞdðjÞ þ qaðdðjÞÞ

� �
:

These four quantities can be computed in constant time using
the information available from GðHÞ. For moves uTði; jÞ;uMTði; jÞ
there are similar equations. As for moves hMði; jÞ [respectively,
hTði; jÞ] we estimate the length of two longest paths: the one pass-
ing through the former nodes aðiÞ and bðiÞ [respectively, cðiÞ and
dðiÞ] and the one passing through i in GðH0Þ. Also these quantities
can be computed in constant time using the information available
from GðHÞ.

4.4.2. Exact evaluation
We first notice that when changing the sequences r and p, also

the arc weights in GðHÞmay change. For this reason, it is necessary
re-computing the exact values for the starting/completion times of
each job after each move. With our exact evaluation strategy we
compute these exact values not only after the application of a
move, but also for evaluating the neighborhood. We next show that
this computation requires linear time if the nodes of GðH0Þ are
numbered according to a topological order.

Theorem 4.6. The exact evaluation of function f ðH0Þ can be computed
in time Oðnþ qÞ.

Proof. Let TOðjÞ be the position of node j in a topological order of
the nodes of GðH0Þ. We notice that, for both kinds of moves uði; jÞ
and hði; jÞ, the starting times of the nodes preceding
minfTOðiÞ; TOðjÞg remain unchanged when passing from H to H0.
If we are moving an unavailability, updating the values Rj for all
j 2 J requires linear time if the unavailabilities and the jobs are
ordered for increasing values of rj. Then, we consider the jobs in
topological order. For each job j to be processed on machine h,
we compute its starting time Sj by first scheduling the removal
time gaðjÞj on machine h. If the removal time can be accommodated
between the completion of job aðjÞ and the start of the next
unavailability in UðhÞ this position is accepted, otherwise the value
Yj is computed by scanning the list of unavailabilities in UðhÞ. Sim-
ilar computation is necessary to compute Xj and to position the
removal time gcðjÞbðcðjÞÞ on the machine processing job cðjÞ and then
the setup time faðjÞj. Finally, Sj can be computed as in Eq. (1). Given
Sj, the completion time Cj can be computed in linear time accord-
ing to Eq. (2) by computing the value vðjÞ and inserting the unava-
ilabilities in UðhÞ one at a time for increasing release time, starting
from Sj. Note that the whole procedure requires a sequence of ele-
mentary steps, each requiring constant time. At each elementary
step either: (i) a removal or a setup is positioned in the schedule,

544 L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546
or (ii) the starting/completion time of a job is defined, or (iii) it is
decided that some unavailability precedes one of the previous val-
ues. This unavailability is not considered again in subsequent com-
putations. Therefore, the overall evaluation requires a total of
Oðnþ qÞ elementary steps, and the thesis follows. h
5. Computational experiments

In this section we describe the performance of four different
versions of our tabu search algorithm, developed by varying the
size of the neighborhood and the evaluation strategy. We evaluate
either the classical critical path (option A) or the extended one (op-
tion B) described in Section 4.3.1. We estimate the penalty function
f ðHÞ, for each H in the neighborhood of the incumbent, by choosing
either the approximate evaluation (option C) or the exact one (op-
tion D), as described in Section 4.4. We have, therefore, four ver-
sions of the algorithm for the pairs of options A–C, A–D, B–C and
B–D.

Each version depends on two parameters, namely the tabu list
length k and the number m of non-improving moves examined be-
fore applying a restart strategy. Our restart strategy consists of
moving one unavailability from a machine to another, randomly
chosen. This kind of move strongly disrupt the schedule since it
generates an overload equal to the duration of one shift in one ma-
chine and a big slack in the other. For each version of the algorithm,
k and m are calibrated with the procedure CALIBRA, described in [1],
for varying k in the interval [5,20], and m in the interval [100,1000].
CALIBRA uses the Taguchi methodology [19] for fractional factorial
experimental designs coupled with a local search procedure to
estimate the best values of all parameters. The resulting pairs
ðk; mÞ for each version of our tabu search algorithm are: (9,876)
for A–C, (16,876) for A–D, (7,876) for B–C and (18,876) for B–D
version.

We fixed the values b ¼ 1010; c ¼ 105 and d ¼ 1 in the objective
function f ðHÞ for all experiments. This corresponds to giving max-
imum priority to the respect of deadlines and then considering
makespan and tardiness in lexicographical order, since a tardiness
of two weeks is penalized less than increasing the makespan by
one minute. In Section 5.2 we compare the four versions of our
tabu search algorithm and draw several conclusions. All versions
of the algorithm were coded in C language and were run on a Pen-
tium� 4, 3.0 GHz with 1024 MB Ram. Two different sets of problem
instances, described in the following section, were generated: the
first set comes from the industrial practice and consists of two real
Fig. 3. Approximate evalua
instances and 24 realistic instances divided into three groups of
easy, medium and hard instances. Realistic instances represent a
wide range of possibilities that can arise in practice. For the real in-
stances we compare the actual performance attained at the plant
when scheduling by hand and by computer. For the realistic in-
stances we compare the performance of our algorithms with that
of the greedy algorithm described in Section 4.1, which was de-
signed to perform similarly to the human schedulers of the plant.
The second set of instances is randomly generated, in order to eval-
uate the performance of our algorithm in a more general context.
5.1. Data set description

The two real instances, correspond to the real production plan
for several weeks of production during September and October
2006. The first instance concerns with 18 days of production dur-
ing which 26 production orders are scheduled. The second instance
concerns with 16 days of production during which 19 production
orders are scheduled. In both instances, there are no urgent orders
(i.e., no deadlines). All the jobs are available from the first day and
the due dates are fixed equal to the end of the last working day.
Operators availability in each week allows to activate three blister
lines from Monday to Friday for two consecutive shifts of 7 h in
each day, plus a short shift of three hours in which two blisters
can be activated from Tuesday to Friday only.

The second set of 24 realistic instances is divided into three
groups with 8 instances in each group. The first group contains
easy instances. There are no urgent orders, the release dates [the
due dates] coincide with the start of the first week [the end of
the second week] for all jobs and the total processing times of all
jobs (with the exclusion of removal and setup times) is approxi-
mately 50% of the department capacity. The second group contains
instances of medium level of difficulty. There are no urgent orders
but the release dates and the due dates may vary over the two
weeks and the workload is slightly larger. The third group contains
hard instances, with urgent orders, variable release/due dates and
larger workload. Instances of this kind may arise when a disruption
occurs in a different plant and its production is redirected to other
plants, thus causing a larger workload and a number of urgent
orders.

The second data set consists of 120 random instances, obtained
by generating 10 instances for each pair ðn;mÞ, with the number of
jobs n varying in the set {20,40,60,100}, and the number m of ma-
chines varying in {2,3,4}. Processing times, release dates, due
tion of move uMði; jÞ.

L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546 545
dates, deadlines, setups and removal times are also randomly gen-
erated, as well as the tool assignment for each job. The total work-
load for each instance is approximately equal to 90% of the
department capacity.

5.2. Computational results

In this section we report on our computational experience on
the real, realistic and random instances described in Section 5.1.

5.2.1. Real and realistic instances
In Table 1 we report on the results achieved by the four version

of our tabu search. The first two lines refer to the two real in-
stances. In columns 2 and 3 the makespan (in hours) and the max-
imum tardiness (in hours) for the manual solutions are shown and
in the subsequent columns the same values are reported for the
four configurations A–C, A–D, B–C and B–D. For these two in-
stances, the greedy algorithm of Section 4.1 achieves in both in-
stances Tmax ¼ 0, While Cmax ¼ 393:00 and Cmax ¼ 443:00,
respectively for the first and the second instance. These values
are quite similar to those obtained manually. The following tree
lines of the table refer to the realistic instances. In each line, the
average over the 8 instances is reported. In column”Manual”, the
performance of the greedy algorithm of Section 4.1 is reported,
as a surrogate of the human schedulers. In the following five lines
we report the average computation time required and the standard
deviation of the makespan Cmax for each group of instances and
each algorithm.

The four versions of the tabu search algorithm clearly outper-
form the manual schedules, with respect to both makespan and
Table 1
Comparison between manual and computerized schedules.

Instance Manual A–C A–D

Cmax Tmax Cmax Tmax Cma

1 408.75 0 380 0 377
2 440.25 0 424.25 0 424
Easy 255.38 0 249.38 0 240
Medium 368.31 77.31 256.13 13.56 248
Difficult 381.13 90.13 267.69 0 266

r Time r Time r
1 – > 3600 – 4 –
2 – > 3600 – <1 –
Easy 5.12 <1 6.66 11.63 8.56
Medium 21.43 <1 7.85 11.25 7.62
Difficult 17.97 <1 9.04 15.00 8.95

Table 2
Performance of the tabu search algorithm for varying n and m.

n m A–C A–D

Cmax Tmax r Cmax Tmax r

20 2 252.32 0 17.96 243.43 0 1
40 2 251.48 0.19 10.23 243.45 0 1
60 2 247.69 0 11.83 238.38 0 1

100 2 272.85 28.01 8.53 268.49 0
20 3 272.84 0 45.70 256.80 0 3
40 3 258.94 0 11.46 250.38 0 1
60 3 253.13 0 14.11 246.16 0 1

100 3 260.08 8.21 9.52 253.38 0 1
20 4 256.77 0 16.39 251.57 0 2
40 4 255.32 3.32 10.80 245.66 0 1
60 4 241.70 0 14.89 233.61 1.14 1

100 4 253.17 0 11.66 247.73 0

Average 256.36 3.31 15.26 248.25 0.10 1
tardiness. Specifically, for what concern the makespan Cmax, the
improvement achieved by the tabu search with respect to the
manual/greedy algorithm is always quite larger than the standard
deviation. For what concern Tmax, the greedy algorithm violates
the due dates in the 16 medium and hard instances, the tabu
search version A–C violates the due dates in only one medium in-
stance, the other three versions do never violate the due dates.
For what concern the violation of the deadlines (not reported in
table), the greedy algorithm violates the deadlines in the eight
hard instances while the four versions of the tabu search do never
violate the deadlines.

5.2.2. Random Instances
The second set of instances consists of 120 random instances

described in Section 5.1. Table 2 shows the performance of the four
configurations of our tabu search algorithm. For each version of the
algorithm, columns Cmax and Tmax report the average values of
makespan and maximum tardiness, respectively, on the 10 in-
stances associated to each pair ðn;mÞ. Column r shows the stan-
dard deviation of Cmax over the 10 instances.

A few comments are in order. Computing the exact value of the
objective function (option D) for all neighbors provide much better
results than using an approximate evaluation (option C). In partic-
ular, combination B–D outperforms the others with respect to both
makespan and maximum tardiness.

Using extended paths provides slightly better results than using
the classical paths in combination with the exact evaluation. When
using the approximate evaluation, better performance are pro-
vided by the classical path. In other words, exact evaluation per-
forms better with a larger neighborhood, while approximate
B–C B–D

x Tmax Cmax Tmax Cmax Tmax

0 377 0 377 0
0 424 0 424 0

.14 0 249.63 0 238.50 0

.63 0 254.56 0 248.88 0

.94 0 270.19 0 264.63 0

Time r Time r Time
3 – 13 – 1
1 – < 1 – 1
10.29 3.70 13.38 8.02 11.75
14.38 10.15 16.63 11.21 16.00
21.13 6.37 15.13 7.65 18.88

B–C B–D

Cmax Tmax r Cmax Tmax r

8.87 251.98 0 16.53 243.51 0 19.61
0.49 251.66 0 10.42 243.26 0 10.46
1.81 247.36 0 11.00 238.87 0 10.90
9.10 273.27 26.94 8.21 268.17 0 9.22
9.08 272.11 0 45.56 256.35 0 40.06
1.63 261.19 0 11.09 249.97 0.76 10.93
4.36 255.19 0 14.30 245.69 0 14.82
0.01 260.23 1.49 9.82 253.54 0 9.87
0.64 260.82 0 29.62 250.75 0 19.20
1.91 254.69 0 11.13 245.01 0 11.73
3.97 244.04 0 13.31 233.36 0 14.78
9.98 253.31 0 10.10 246.68 0 10.92

5.15 257.15 2.37 15.92 247.93 0.06 15.21

546 L. Venditti et al. / European Journal of Operational Research 202 (2010) 538–546
evaluation performs best with a smaller neighborhood, the
improvements being reached after several restart phases.

It is interesting analyzing the time needed by the algorithm to
reach the best solution found within one minute of computation
time. With combinations A–C and A–D the best solutions are found
after 7.53 and 9.97 s on average, respectively. With combinations
B–C and B–D the best solutions are found after 6.83 and 10.03 s
on average, respectively. We notice that despite the larger number
of solutions to explore in each iteration using the extended path re-
quires approximately the same computation time to find the best
solution.

6. Conclusions

In this paper, we studied a practical scheduling problem arising
in the packaging department of a pharmaceutical production plant.
The problem is formulated as a multi-purpose machine scheduling
problem with additional constraints. A tabu search algorithm is able
to find good solutions within short computation time, compared to
the solutions found by hand and by a greedy algorithm. The make-
span reduction is between 3.6% and 7.5% for easy instances and in-
creases to more than 30% for hard instances, which is a remarkable
improvement in the productivity of the plant. More important,
when analyzed by the plant managers the solutions were consid-
ered feasible in practice. The results achieved confirm that schedul-
ing technology is mature to solve complex real problems. To this
aim, however, it is important to face the complexity of practical
scheduling problems by using detailed scheduling models.

Acknowledgement

This work has been partially funded by the Italian Ministry of
Research, Grant number RBIP06BZW8. The authors are also grate-
ful to the anonymous reviewers for their helpful comments.

References

[1] B. Adenso-Díaz, M. Laguna, Fine-tuning of algorithms using fractional
experimental designs and local search, Operations Research 54 (2006) 99–114.

[2] O. Braysy, A reactive variable neighborhood search for the vehicle-routing
problem with time windows, INFORMS Journal on Computing 15 (4) (2003)
347–368.
[3] O. Braysy, M. Gendreau, Vehicle routing problem with time windows.
Part II: Metaheuristics, Transportation Science 39 (1) (2005) 119–139.

[4] P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch, Resource-constrained
project scheduling: Notation, classification, models, and methods, European
Journal of Operational Research 112 (1) (1999) 3–41.

[5] W.C. Chiang, R.A. Russell, A reactive tabu search metaheuristic for the vehicle
routing problem with time windows, INFORMS Journal on Computing 9 (4)
(1997) 417–430.

[6] S. Dauzère-Pérès, W. Roux, J.B. Lasserre, Multi-resource shop scheduling with
resource flexibility, European Journal of Operational Research 107 (2) (1998)
289–305.

[7] P.M. Franca, M. Gendreau, G. Laporte, F.M. Muller, A tabu search
heuristic for the multiprocessor scheduling problem with sequence
dependent setup times, International Journal of Production Economics
43 (1996) 78–89.

[8] F. Glover, Future paths for integer programming and links to artificial
intelligence, Computers and Operations Research 13 (1986) 533–549.

[9] F. Glover, M. Laguna, Tabu Search, Kluwer, 1997.
[10] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and

approximation in deterministic machine scheduling: A survey, Annals of
Discrete Mathematics 5 (1979) 287–326.

[11] K.N. McKay, M. Pinedo, S. Webster, Practice-focused research issues for
scheduling systems, Production and Operations Management 11 (2002) 249–
258.

[12] K.N. McKay, V.C.S. Wiers, Integrated decision support for planning, scheduling,
and dispatching tasks in a focused factory, Computers in Industry 50 (2003) 5–
14.

[13] T.E. Morton, D.W. Pentico, Heuristic Scheduling Systems, John Wiley & Sons,
1993.

[14] E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job shop
problem, Journal of Scheduling 8 (2005) 145–159.

[15] D. Pacciarelli, The alternative graph formulation for solving complex factory
scheduling problems, International Journal of Production Research 40 (2002)
3641–3653.

[16] M. Pinedo, Scheduling. Theory, algorithms, and systems, Prentice-Hall, 1995.
[17] M. Pinedo, Planning and Scheduling in Manufacturing and Services, Springer,

2005.
[18] A. Reisman, A. Kumar, J. Motwani, Flowshop scheduling/sequencing research:

A statistical review of the literature, 1952–1994, IEEE Transactions on
Engineering Management 44 (1997) 316–329.

[19] R.K. Roy, A Primer on the Taguchi Method, Van Nostrand Reinhold, New York,
1990.

[20] R. Ruiz, F.S. S�erifoğlu, T. Urlings, Modeling realistic hybrid flexible flowshop
scheduling problems, Computers and Operations Research 35 (2008) 1151–
1175.

[21] J.M.J. Schutten, R.A.M. Leussink, Parallel machine scheduling with release
dates, due dates and family setup times, International Journal of Production
Economics 46 (1996) 119–125.

[22] V. T’kindt, J.C. Billaut, Multicriteria Scheduling, Springer, 2006.
[23] P.J.M. van Laarhoven, E.H.L. Aarts, J.K. Lenstra, Job shop scheduling by

simulated annealing, Operations Research 40 (1992) 113–125.
[24] G.H. Vieira, J.W. Herrmann, E. Lin, Rescheduling manufacturing systems: A

framework of strategies, policies, and methods, Journal of Scheduling 6 (2003)
39–62.

	A tabu search algorithm for scheduling pharmaceutical packaging operations
	Introduction
	Description of the problem
	Graph representation of a solution
	Tabu search algorithm
	Greedy algorithm
	Neighborhood structure
	Acyclicity property
	Connectivity

	Neighborhood exploration
	Critical paths and extended critical paths

	Move evaluation
	Approximate evaluation
	Exact evaluation

	Computational experiments
	Data set description
	Computational results
	Real and realistic instances
	Random Instances

	Conclusions
	Acknowledgement
	References

